Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Aug;23(4):480-6.
doi: 10.1002/tox.20366.

Determination of acute and early life stage toxicity of fat-plant effluent using zebrafish (Danio rerio)

Affiliations

Determination of acute and early life stage toxicity of fat-plant effluent using zebrafish (Danio rerio)

Turgay Sişman et al. Environ Toxicol. 2008 Aug.

Abstract

The present study examines the effects of an effluent from a fat plant (FP) on zebrafish (Danio rerio) embryos and larvae using the whole effluent toxicity testing methods (WET). The method is based on acute toxicity using 96-h larval mortality and chronic toxicity using endpoints such as the time to hatch, hatching success, deformity, growth rate, swim-up failure, accumulative mortality, and sex ratio. On the basis of larval mortality the 96-h LC(50) (the concentration was lethal to 50% of newly hatching zebrafish larvae) was 68.9%. In chronic toxicity test, newly fertilized embryos (<5-h old) were exposed to 1, 6, 12, 25, 50% effluent concentrations in a 24-h static renewal system at (27 +/- 0.5) degrees C until 15-day posthatch. The results showed that all chronic endpoints were significantly different from the control at 50% dilution. Embryos began to show lesions on third day at higher concentrations (12, 25, 50% FP effluent concentrations). Treatment group of 25% dilution showed delayed time to hatch. Morphological abnormalities were observed in newly hatched larvae at 25 and 50% FP effluent concentrations. At 25% dilution, sex ratio of larvae was alternated and there was feminization phenomenon. On the basis of the study, the FP effluent tested here may cause increasing embryotoxicity in the zebrafish embryos. We conclude that the test using zebrafish is feasible to evaluate both acute and chronic toxicities of industrial effluents.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources