Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2008;71(4):266-75.
doi: 10.1080/15287390701612860.

Effects of organochlorines, individually and in mixtures, on B-cell proliferation in marine mammals and mice

Affiliations
Comparative Study

Effects of organochlorines, individually and in mixtures, on B-cell proliferation in marine mammals and mice

Chiharu Mori et al. J Toxicol Environ Health A. 2008.

Abstract

Organochlorines (OC) are lipophilic and stable, and therefore accumulate in tissues of top predators, such as marine mammals. While the immunomodulatory effects of individual OC have been studied in lab animals, their effects in other species (such as marine mammals) and the possible interactions between chemicals in mixtures are not well understood. This study investigated the immunomodulatory effects of four polychlorinated biphenyls (PCB, IUPAC numbers 138, 153, 169, and 180), as well as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), individually and in mixtures, in marine mammals and mice. Mitogen-induced B lymphocyte proliferation was mostly modulated by non-coplanar PCBs, for which general mechanisms underlying toxicity are poorly understood. Simple additive effects of OC in mixtures were found only in mice, while both synergistic and antagonistic interactions between OC were found in marine mammals. The toxic equivalency (TEQ) approach, which is currently used to assess the dioxin-like toxicity of OC mixtures, failed to predict immunotoxicity in mice and marine mammals, likely due to the complexity of interactions between OC and effects via dioxin-independent pathways. The commonly used mouse model failed to predict the immunotoxicity due to OC in the marine mammals tested. In addition, clustering data suggested that phylogeny might not help predict the toxicity of OC. Lymphoproliferative response was modulated in most species tested suggesting the possibility of increased susceptibility to infectious diseases in these animals. These findings may be helpful in more accurately characterizing the immunotoxic potential of OC in different target species and help in more relevant risk assessment.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources