Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Dec 15;87(4):1010-6.
doi: 10.1002/jbm.a.31816.

Effect of scaffold architecture and pore size on smooth muscle cell growth

Affiliations

Effect of scaffold architecture and pore size on smooth muscle cell growth

Min Lee et al. J Biomed Mater Res A. .

Abstract

Tissue engineering has the potential to replace damaged tissues and organs. Diffusion limitation of cell growth in three-dimensional (3D) scaffolds is a significant constraint in most tissue engineering applications. This study describes a scaffold architecture that improves mass transfer. Scaffolds with three different geometries of villi architecture (0.5, 1, 0.5; 0.5, 1, 1; 1, 1, 1 mm; villus diameter, height, intervillus spacing, respectively) were fabricated by indirect 3D printing technique. The ability of these scaffolds to support smooth muscle cell growth was investigated in vitro. Smooth muscle cells attached to the scaffolds uniformly after 1 day of culture, and the cell density in the scaffold with small villi feature (0.5 mm) was significantly higher as compared to that for the scaffold with large villi features (1 mm) after 14 days of culture. To evaluate the effect of scaffold pore size on cell growth, scaffolds with three different pore size ranges (50-100, 100-150, and 150-200 microm) were fabricated by the solvent casting and particulate leaching technique. Scaffold pore size did not significantly affect cell growth after 14 days of culture. Optimization in the architectural design of scaffolds provides an alternative method to improve diffusion limitation in the 3D constructs.

PubMed Disclaimer

Publication types

LinkOut - more resources