Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Dec;13(12):1908-11.
doi: 10.3201/eid1312.070763.

Escherichia coli O157:H7 in feral swine near spinach fields and cattle, central California coast

Affiliations

Escherichia coli O157:H7 in feral swine near spinach fields and cattle, central California coast

Michele T Jay et al. Emerg Infect Dis. 2007 Dec.

Abstract

We investigated involvement of feral swine in contamination of agricultural fields and surface waterways with Escherichia coli O157:H7 after a nationwide outbreak traced to bagged spinach from California. Isolates from feral swine, cattle, surface water, sediment, and soil at 1 ranch were matched to the outbreak strain.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Left: aerial (2 m) photograph of ranch A showing overlapping circular buffer regions around feral swine trap 1 and trap 2 (San Benito Crop Year 2006; Image Trader, Flagstaff, AZ). The radius for the buffer (1.8 km) is the circumference of the mean home range for feral swine in mainland California (8). Estimated density = 4.6 swine/km2 and total area = (A + B + C) – D = 14.8 km2. Areas A, B, and C, combined with counts of individual feral swine from October through November 2006, were used to calculate the average population density. Bottom left: digital infrared photograph of feral swine at trap 1. Right: potential risk factors for Escherichia coli O157:H7 contamination of spinach at ranch A: 1) Feral sow and piglets sharing rangeland with cattle; 2) feral swine feces, tracks, and rooting in a neighboring spinach field; 3) cattle in surface water.
Figure 2
Figure 2
Minimum spanning tree analysis of multilocus variable number tandem repeat analysis (MLVA) data of 76 Escherichia coli O157:H7 strains typed from 47 samples compared with the spinach-related outbreak strain (subtype E). A categorical coefficient and the BURST priority rule of the highest number of single-locus changes were used for the clustering (Bionumerics software version 4.601, Applied Maths, Austin, TX, USA). Circles representing unique MLVA types are designated by an alphanumeric value (Table 2). Numbers between circles represent summed tandem-repeat differences between MLVA types (10). The shaded areas (red, green, and blue) denote genetically related clusters with MLVA differences <3. Red circles indicate types comprising isolates that were indistinguishable from the spinach-related outbreak strain (subtype E) by pulsed-field gel electrophoresis (PFGE).

References

    1. Cornick NA, Helgerson AF. Transmission and infectious dose of Escherichia coli O157:H7 in swine. Appl Environ Microbiol. 2004;70:5331–5. 10.1128/AEM.70.9.5331-5335.2004 - DOI - PMC - PubMed
    1. Feder I, Wallace FM, Gray JT, Fratamico P, Fedorka-Cray PJ, Pearce RA, et al. Isolation of Escherichia coli O157:H7 from intact colon fecal samples of swine. Emerg Infect Dis. 2003;9:380–3. - PMC - PubMed
    1. Rice DH, Hancock DD, Besser TE. Faecal culture of wild animals for Escherichia coli O157:H7. Vet Rec. 2003;152:82–3. - PubMed
    1. Sargeant JM, Hafer DJ, Gillespie JR, Oberst RD, Flood SJ. Prevalence of Escherichia coli O157:H7 in white-tailed deer sharing rangeland with cattle. J Am Vet Med Assoc. 1999;215:792–4. - PubMed
    1. Wahlstrom H, Tysen E, Olsson-Engvall E, Brandstrom B, Eriksson E, Morner T, et al. Survey of Campylobacter species, VTEC O157 and Salmonella species in Swedish wildlife. Vet Rec. 2003;153:74–80. - PubMed

Publication types