Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jan;14(1):107-14.
doi: 10.3201/eid1401.070778.

High genetic diversity of measles virus, World Health Organization European Region, 2005-2006

Affiliations

High genetic diversity of measles virus, World Health Organization European Region, 2005-2006

Jacques R Kremer et al. Emerg Infect Dis. 2008 Jan.

Abstract

During 2005-2006, nine measles virus (MV) genotypes were identified throughout the World Health Organization European Region. All major epidemics were associated with genotypes D4, D6, and B3. Other genotypes (B2, D5, D8, D9, G2, and H1) were only found in limited numbers of cases after importation from other continents. The genetic diversity of endemic D6 strains was low; genotypes C2 and D7, circulating in Europe until recent years, were no longer identified. The transmission chains of several indigenous MV strains may thus have been interrupted by enhanced vaccination. However, multiple importations from Africa and Asia and virus introduction into highly mobile and unvaccinated communities caused a massive spread of D4 and B3 strains throughout much of the region. Thus, despite the reduction of endemic MV circulation, importation of MV from other continents caused prolonged circulation and large outbreaks after their introduction into unvaccinated and highly mobile communities.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Phylogenetic tree showing representative genotype D6 strains identified in Europe before 2005, strains exported from Europe to other continents (source of exportation is shown in brackets), and the D6 variants that were dominant in Europe during 2005 (D6–2000) and 2006 (D6–2005). The phylogenetic tree was calculated on the basis of the 450 nt that code for the C-terminus of the MV N protein, by using MEGA 3.1 software and the neighbor-joining method (500 bootstraps). Genetic distances are represented as numbers of nucleotide differences between strains. Measles virus strains were named according to World Health Organization nomenclature: MVi/City of isolation.Country/epidemiologic week.year of isolation(/isolate number). Sequences obtained from RNA extracted from isolates (MVi) or clinical material (MVs) were distinguished. GenBank accession numbers are also shown for each strain.
Figure 2
Figure 2
Two main variants, D6–2000 and D6–2005, of D6 identified in Europe during 2005–2006. Tree calculation and measles virus nomenclature are as delineated in Figure 1.
Figure 3
Figure 3
Four different genetic groups of genotype D4 identified in Europe during 2005–2006 and their closest relatives (in italics) identified on other continents. Tree calculation and measles virus nomenclature are as delineated in Figure 1.
Figure 4
Figure 4
Genotype B3 variants identified in Europe during 2005–2006 and some closely related strains identified on other continents (in italics). Tree calculation and measles virus nomenclature are as delineated in Figure 1.

References

    1. World Health Organization. Eliminating measles and rubella and preventing congenital rubella infection. WHO European Region strategic plan, 2005–2010. Copenhagen: The Organization; 2005.
    1. Mulders MN, Truong AT, Muller CP. Monitoring of measles elimination using molecular epidemiology. Vaccine. 2001;19:2245–9. 10.1016/S0264-410X(00)00453-9 - DOI - PubMed
    1. Rota JS, Heath JL, Rota PA, King GE, Celma ML, Carabana J, et al. Molecular epidemiology of measles virus: identification of pathways of transmission and implications for measles elimination. J Infect Dis. 1996;173:32–7. - PubMed
    1. Muller CP, Mulders MN. Molecular epidemiology of measles virus. In: Leitner T, editor. The molecular epidemiology of human viruses. Boston: Kluwer Academic Publishers; 2002. p. 237–72.
    1. Riddell MA, Rota JS, Rota PA. Review of the temporal and geographical distribution of measles virus genotypes in the prevaccine and postvaccine eras. Virol J. 2005;2:87. 10.1186/1743-422X-2-87 - DOI - PMC - PubMed

Publication types