Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Jan;33(1):102-12.
doi: 10.1016/j.jhsa.2007.09.007.

Tendon: biology, biomechanics, repair, growth factors, and evolving treatment options

Affiliations
Review

Tendon: biology, biomechanics, repair, growth factors, and evolving treatment options

Roshan James et al. J Hand Surg Am. 2008 Jan.

Abstract

Surgical treatment of tendon ruptures and lacerations is currently the most common therapeutic modality. Tendon repair in the hand involves a slow repair process, which results in inferior repair tissue and often a failure to obtain full active range of motion. The initial stages of repair include the formation of functionally weak tissue that is not capable of supporting tensile forces that allow early active range of motion. Immobilization of the digit or limb will promote faster healing but inevitably results in the formation of adhesions between the tendon and tendon sheath, which leads to friction and reduced gliding. Loading during the healing phase is critical to avoid these adhesions but involves increased risk of rupture of the repaired tendon. Understanding the biology and organization of the native tendon and the process of morphogenesis of tendon tissue is necessary to improve current treatment modalities. Screening the genes expressed during tendon morphogenesis and determining the growth factors most crucial for tendon development will likely lead to treatment options that result in superior repair tissue and ultimately improved functional outcomes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources