Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Feb;7(2):183-8.
doi: 10.1039/b713462b. Epub 2007 Dec 20.

Activity coupling and complex formation between bacterial luciferase and flavin reductases

Affiliations
Review

Activity coupling and complex formation between bacterial luciferase and flavin reductases

Shiao-Chun Tu. Photochem Photobiol Sci. 2008 Feb.

Abstract

Luminous bacteria contain several species of flavin reductases, which catalyze the reduction of FMN using NADH and/or NADPH as a reductant. The reduced FMN (i.e. FMNH(2)) so generated is utilized along with a long-chain aliphatic aldehyde and molecular oxygen by luciferase as substrates for the bioluminescence reaction. In this report, the general properties of luciferases and reductases from luminous bacteria are briefly summarized. Earlier and more recent studies demonstrating the direct transfer of FMNH(2) from reductases to luciferase are surveyed. Using reductases and luciferases from Vibrio harveyi and Vibrio fischeri, two mechanisms were uncovered for the direct transfer of reduced flavin cofactor and reduced flavin product of reductase to luciferase. A complex of an NADPH-specific reductase (FRP(Vh)) and luciferase from V. harveyi has been detected in vitro and in vivo. Both constituent enzymes in such a complex are catalytically active. The reduction of FRP(Vh)-bound FMN cofactor by NADPH is reversible, allowing the cellular contents of NADP(+) and NADPH as a factor for the regulation of the production of FMNH(2) by FRP(Vh) for luciferase bioluminescence. Other regulations of the activity coupling between reductase and luciferase are also discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources