Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 May;391(1):151-9.
doi: 10.1007/s00216-008-1865-7. Epub 2008 Feb 9.

Hydrophilic interaction liquid chromatography (HILIC) in proteomics

Affiliations
Review

Hydrophilic interaction liquid chromatography (HILIC) in proteomics

Paul J Boersema et al. Anal Bioanal Chem. 2008 May.

Abstract

In proteomics, nanoflow multidimensional chromatography is now the gold standard for the separation of complex mixtures of peptides as generated by in-solution digestion of whole-cell lysates. Ideally, the different stationary phases used in multidimensional chromatography should provide orthogonal separation characteristics. For this reason, the combination of strong cation exchange chromatography (SCX) and reversed-phase (RP) chromatography is the most widely used combination for the separation of peptides. Here, we review the potential of hydrophilic interaction liquid chromatography (HILIC) as a separation tool in the multidimensional separation of peptides in proteomics applications. Recent work has revealed that HILIC may provide an excellent alternative to SCX, possessing several advantages in the area of separation power and targeted analysis of protein post-translational modifications. [figure: see text]

PubMed Disclaimer

Figures

Figure
Figure
Artistic impression of the HILIC separation mechanism
Fig. 1
Fig. 1
Chemical structures of the functional groups in common HILIC stationary phases
Fig. 2
Fig. 2
Two-dimensional plots of normalized peptide retention times in HILIC, SCX and RP separation. Both HILIC and SCX have separation mechanisms that are orthogonal to RP, but the clustering of similarly charged peptides in SCX makes this a less optimal first dimension. From the work of Gilar et al. [11] and reproduced with permission from the American Chemical Society
Fig. 3
Fig. 3
Distribution of phosphorylated and N-acetylated peptides over ZIC–HILIC fractions. First dimension: ZIC-HILIC, 200 μm × 160 mm, 3.5 μm, 200 Å. Flow rate 1.5 μL/min, 1 min.fractions. Number of peptides: bare line, total; squares, N-acetylated; triangles, phosphorylated. ZIC–HILIC provides clear enrichment of N-acetylated peptides in the initial fractions. From the work of Boersema et al. [12], reproduced with permission from the American Chemical Society
Fig. 4
Fig. 4
MALDI-TOF spectra after SPE of a tryptic digest of TIMP-1 by RP (R2, upper spectrum) and HILIC (lower spectrum) microcolumns. HILIC clearly enriches for glycopeptides. This figure was kindly provided by Dr. P. Højrup (similar to [70])
Fig. 5
Fig. 5
HILIC separation of GluC-generated long N-terminal peptides from histone H3.2. HILIC primary separation is controlled by the number of acetylations (the three bigger peaks for the +butyrate sample), and within these peaks a secondary separation is observed, relating to the number of methylations (the narrower peaks). Adapted by permission from Macmillan Publishers Ltd: Nature Methods [77]

Similar articles

Cited by

References

    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/S0021-9673(01)81096-7', 'is_inner': False, 'url': 'https://doi.org/10.1016/s0021-9673(01)81096-7'}]}
    2. Linden JC, Lawhead CL (1975) J Chromatogr A 105:125–133
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1002/jssc.200600199', 'is_inner': False, 'url': 'https://doi.org/10.1002/jssc.200600199'}, {'type': 'PubMed', 'value': '16970185', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/16970185/'}]}
    2. Hemström P, Irgum K (2006) J Sep Sci 29:1784–1821 - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1021/ac000338b', 'is_inner': False, 'url': 'https://doi.org/10.1021/ac000338b'}, {'type': 'PubMed', 'value': '11028621', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/11028621/'}]}
    2. Strege MA, Stevenson S, Lawrence SM (2000) Anal Chem 72:4629–4633 - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1021/ac9911490', 'is_inner': False, 'url': 'https://doi.org/10.1021/ac9911490'}, {'type': 'PubMed', 'value': '10784135', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/10784135/'}]}
    2. Risley DS, Strege MA (2000) Anal Chem 72:1736–1739 - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1074/jbc.M205166200', 'is_inner': False, 'url': 'https://doi.org/10.1074/jbc.m205166200'}, {'type': 'PubMed', 'value': '12154089', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/12154089/'}]}
    2. Sarg B, Koutzamani E, Helliger W, Rundquist I, Lindner HH (2002) J Biol Chem 277:39195–39201 - PubMed

Publication types

LinkOut - more resources