Influence of environmental factors on stomatal development
- PMID: 18266617
- DOI: 10.1111/j.1469-8137.2007.02351.x
Influence of environmental factors on stomatal development
Abstract
Stomata play a pivotal role in the regulation of gas exchange in flowering plants and are distributed throughout the aerial epidermis. In leaves, the pattern of stomatal distribution is highly variable between species but is regulated by a mechanism that maintains a minimum of one cell spacing between stomata. In Arabidopsis, a number of the genetic components of this mechanism have been identified and include, SDD1, EPF1 and the putative receptors TMM and the ERECTA-gene family. A mitogen-activated protein (MAP) kinase signalling cascade is believed to act downstream of these putative receptors while a number of transcription factors including SPCH, MUTE and FAMA have been identified that control consecutive steps of stomatal development. The environment also has significant effects on stomatal development. In a number of species both light intensity and CO(2) concentrations have been shown to influence the frequency at which stomata develop on leaves. Long-distance signalling mechanisms have been implicated in these environmental responses with the conditions sensed by mature leaves determining the stomatal frequency in developing leaves. Thus, changes in the environment appear to act by modulating the developmental and patterning pathways to determine stomatal frequency.
References
-
- Aharoni A, Dixit S, Jetter R, Thoenes E, Van Arkel G, Pereira A. 2004. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16: 2463-2480.
-
- Ainsworth EA, Rogers A. 2007. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, Cell & Environment 30: 258-270.
-
- Aloni R, Langhans M, Aloni E, Dreieicher E, Ullrich CI. 2005. Root-synthesized cytokinin in Arabidopsis is distributed in the shoot by the transpiration stream. Journal of Experimental Botany 56: 1535-1544.
-
- Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF. 2000. MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant Journal 24: 457-466.
-
- Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J. 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415: 977-983.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
