Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Mar 28;377(3):655-67.
doi: 10.1016/j.jmb.2008.01.001. Epub 2008 Jan 11.

Structural insight on the mechanism of regulation of the MarR family of proteins: high-resolution crystal structure of a transcriptional repressor from Methanobacterium thermoautotrophicum

Affiliations

Structural insight on the mechanism of regulation of the MarR family of proteins: high-resolution crystal structure of a transcriptional repressor from Methanobacterium thermoautotrophicum

Vivian Saridakis et al. J Mol Biol. .

Abstract

Transcriptional regulators belonging to the MarR family are characterized by a winged-helix DNA binding domain. These transcriptional regulators regulate the efflux and influx of phenolic agents in bacteria and archaea. In Escherichia coli, MarR regulates the multiple antibiotic resistance operon and its inactivation produces a multiple antibiotic resistance phenotype. In some organisms, active efflux of drug compounds will produce a drug resistance phenotype, whereas in other organisms, active influx of chlorinated hydrocarbons results in their rapid degradation. Although proteins in the MarR family are regulators of important biological processes, their mechanism of action is not well understood and structural information about how phenolic agents regulate the activity of these proteins is lacking. This article presents the three-dimensional structure of a protein of the MarR family, MTH313, in its apo form and in complex with salicylate, a known inactivator. A comparison of these two structures indicates that the mechanism of regulation involves a large conformational change in the DNA binding lobe. Electrophoretic mobility shift assay and biophysical analyses further suggest that salicylate inactivates MTH313 and prevents it from binding to its promoter region.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources