A rapidly diverging superfamily of peptide toxins in venomous Gemmula species
- PMID: 18272193
- PMCID: PMC2582027
- DOI: 10.1016/j.toxicon.2007.12.022
A rapidly diverging superfamily of peptide toxins in venomous Gemmula species
Abstract
The gem turrids (genus Gemmula Weinkauff, 1875) are venomous snails in the family Turridae. A gene superfamily of disulfide-rich peptides expressed in Gemmula venom ducts was characterized. Gemmula speciosa (Reeve, 1843) venom duct cDNA clones revealed two different conotoxin-like prepropeptide precursors, with identical signal sequences, a largely conserved pro region, and a cysteine-rich C-terminal mature peptide region. The conserved signal sequence was used to successfully amplify homologous genes from three other Gemmula species; all had the same pattern of Cys residues in the predicted mature venom peptide. Although the signal sequence and propeptide regions were highly conserved, the mature toxin regions diverged greatly in sequence, except that the Cys residues were conserved. We designate this as the Pg-gene superfamily (Pg-superfamily) of Gemmula venom peptides. Purification of two members of the family directly from G. speciosa venom was achieved; amino acid sequence analysis revealed that these peptides are highly posttranslationally modified. With at least 10-fold as many species of turrids as cone snails, identification of rapidly diversifying gene superfamilies such as the Pg-superfamily of Gemmula is essential before the facile and systematic discovery and characterization of peptide toxins from turrid venoms can be achieved.
Figures
References
-
- Bouchet P, Lozouet P, Maestrati P, Heros V. Assessing the magnitude of species richness in tropical marine environments: high numbers of molluscs at a New Caledonia site. Biol. J. Linnean Soc. 2002;75:421–436.
-
- Bouchet P, Rocroi JP. Malacologia: International Journal of Malacology, Classification and nomenclature of gastropod families. ConchBooks; 2005.
-
- Conticello SG, Gilad Y, Avidan N, Ben-Asher E, Levy Z, Fainzilber M. Mechanisms for evolving hypervariability: the case of conopeptides. Mol. Biol. Evol. 2001;18:120–131. - PubMed
-
- Hillyard DR, Monje VD, Mintz IM, Bean BP, Nadasdi L, Ramachandran J, Miljanich G, Azimi-Zoonooz A, Mcintosh JM, Cruz LJ, Imperial JS, Olivera BM. A new Conus peptide ligand for mammalian presynaptic Ca2+ channels. Neuron. 1992;9:69–77. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
