Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Mar;89(Pt 3):611-626.
doi: 10.1099/vir.0.83426-0.

New insights into internal ribosome entry site elements relevant for viral gene expression

Affiliations
Review

New insights into internal ribosome entry site elements relevant for viral gene expression

Encarnación Martínez-Salas et al. J Gen Virol. 2008 Mar.

Abstract

A distinctive feature of positive-strand RNA viruses is the presence of high-order structural elements at the untranslated regions (UTR) of the genome that are essential for viral RNA replication. The RNA of all members of the family Picornaviridae initiate translation internally, via an internal ribosome entry site (IRES) element present in the 5' UTR. IRES elements consist of cis-acting RNA structures that usually require specific RNA-binding proteins for translational machinery recruitment. This specialized mechanism of translation initiation is shared with other viral RNAs, e.g. from hepatitis C virus and pestivirus, and represents an alternative to the cap-dependent mechanism. In cells infected with many picornaviruses, proteolysis or changes in phosphorylation of key host factors induces shut off of cellular protein synthesis. This event occurs simultaneously with the synthesis of viral gene products since IRES activity is resistant to the modifications of the host factors. Viral gene expression and RNA replication in positive-strand viruses is further stimulated by viral RNA circularization, involving direct RNA-RNA contacts between the 5' and 3' ends as well as RNA-binding protein bridges. In this review, we discuss novel insights into the mechanisms that control picornavirus gene expression and compare them to those operating in other positive-strand RNA viruses.

PubMed Disclaimer

Publication types

LinkOut - more resources