Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Apr;20(4):471-83.
doi: 10.1093/intimm/dxn007. Epub 2008 Feb 13.

CTLA-4 x Ig converts naive CD4+CD25- T cells into CD4+CD25+ regulatory T cells

Affiliations

CTLA-4 x Ig converts naive CD4+CD25- T cells into CD4+CD25+ regulatory T cells

Marjaneh Razmara et al. Int Immunol. 2008 Apr.

Abstract

CTLA-4 x Ig was originally designed as an immunosuppressive agent capable of interfering with the co-stimulation of T cells. In the present study, we demonstrate that CTLA-4 x Ig, in combination with TCR ligation, has the additional capacity to convert naive CD4+CD25- T cells into Foxp3+ regulatory T (T(reg)) cells, as well as to expand their numbers. The CD4+CD25+Foxp3+ T(reg) generated by CTLA-4 x Ig treatment in vitro potently suppress effector T cells. Extending this in vivo, we show that systemic administration of CTLA-4 x Ig increases the percentage of CD4+CD25(hi)Foxp3+ cells within mixed lymphocyte reaction-induced murine lymph nodes. Significantly, the in vitro conversion of naive CD4+CD25- T cells into T(reg) cells is antigen-presenting cell (APC) dependent. This finding, together with the further observation that this conversion can also be driven in vitro by an antibody that engages B7-2 ligand, suggests that CTLA-4 x Ig-driven T(reg) induction may be predicated upon active CTLA-4 x Ig to B7-2 signaling within APC, which elicits from them T(reg)-inducing potential. These findings extend CTLA-4 x Ig's functional repertoire, and at the same time, reinforce the concept that T cell anergy and active suppression are not entirely distinct processes and may be linked by some common molecular triggers.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources