Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Feb:221:200-13.
doi: 10.1111/j.1600-065X.2008.00581.x.

Real-time imaging of the pancreas during development of diabetes

Affiliations
Review

Real-time imaging of the pancreas during development of diabetes

Marianne M Martinic et al. Immunol Rev. 2008 Feb.

Abstract

Type 1 diabetes (T1D) is the most common autoimmune disease affecting almost 20 million people worldwide. T1D is thought to be caused by autoaggressive T cells infiltrating pancreatic islets and destroying insulin-producing beta cells. Because insulin therapy, the current treatment for T1D, does not protect against all late complications and because life expectancy is affected, researchers are searching for preventive or curative approaches that block or prevent immune-mediated islet destruction. However, the precise in vivo events that take place in islets during T1D development remain unknown. During the past decade, 2-photon microscopy (2PM) has emerged as a new technique to assess cell-cell interactions in real-time and at high resolution in vivo. This technique has been demonstrated recently to be a promising tool to study the progressive development of T1D pathogenesis at the cellular level. In this review, we propose a new surgical and immunological approach so that 2PM can be utilized to monitor the duration that effector cells reside within an islet, determine the number of effector cells needed for elimination of beta cells, and follow the fate of beta cells when regulatory cells are present. Understanding the cellular dynamics during T1D development is critical for the rational design of immunotherapies.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources