Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 May;36(5):904-10.
doi: 10.1124/dmd.107.018895. Epub 2008 Feb 14.

Two allelic variants of aldo-keto reductase 1A1 exhibit reduced in vitro metabolism of daunorubicin

Affiliations

Two allelic variants of aldo-keto reductase 1A1 exhibit reduced in vitro metabolism of daunorubicin

Onkar S Bains et al. Drug Metab Dispos. 2008 May.

Abstract

Aldo-keto reductases (AKRs) are a class of NADPH-dependent oxidoreductases that have been linked to metabolism of the anthracyclines doxorubicin (DOX) and daunorubicin (DAUN). Although widely used, cardiotoxicity continues to be a serious side effect that may be linked to metabolites or reactive intermediates generated in their metabolism. In this study we examine the little known effects of nonsynonymous single nucleotide polymorphisms of human AKR1A1 on the metabolism of these drugs to their alcohol metabolites. Expressed and purified from bacteria using affinity chromatography, the AKR1A1 protein with a single histidine (6x-His) tag exhibited the greatest activity using two test substrates: p-nitrobenzaldehyde (5.09 +/- 0.16 micromol/min/mg of purified protein) and DL-glyceraldehyde (1.24 +/- 0.17 micromol/min/mg). These activities are in agreement with published literature values of nontagged human AKR1A1. The 6x-His-tagged AKR1A1 wild type and allelic variants, E55D and N52S, were subsequently examined for metabolic activity using DAUN and DOX. The tagged variants showed significantly reduced activities (1.10 +/- 0.42 and 0.72 +/- 0.47 nmol of daunorubicinol (DAUNol) formed/min/mg of purified protein for E55D and N52S, respectively) compared with the wild type (2.34 +/- 0.71 nmol/min/mg). The wild type and E55D variant metabolized DOX to doxorubicinol (DOXol); however, the levels fell below the limit of quantitation (25 nM). The N52S variant yielded no detectable DOXol. A kinetic analysis of the DAUN reductase activities revealed that both amino acid substitutions lead to reduced substrate affinity, measured as significant increases in the measured K(m) for the reduction reaction by AKR1A1. Hence, it is possible that these allelic variants can act as genetic biomarkers for the clinical development of DAUN-induced cardiotoxicity.

PubMed Disclaimer

Publication types

LinkOut - more resources