Metabolic alterations and systemic inflammation in obstructive sleep apnea among nonobese and obese prepubertal children
- PMID: 18276939
- PMCID: PMC2383995
- DOI: 10.1164/rccm.200711-1670OC
Metabolic alterations and systemic inflammation in obstructive sleep apnea among nonobese and obese prepubertal children
Abstract
Rationale: Obstructive sleep apnea (OSA) has been associated with a higher prevalence and severity of the metabolic syndrome in adult patients, even after controlling for obesity. In contrast, OSA in prepubertal children does not appear to correlate with the magnitude of such metabolic derangements.
Objectives: To further establish the potential mechanistic role of OSA in metabolic regulation in prepubertal children.
Methods: Fasting glucose, insulin, C-reactive protein, apolipoprotein B, and serum lipid concentrations were determined during the initial polysomnographic diagnosis of OSA and 6-12 months after adenotonsillectomy in both obese and nonobese children.
Measurements and main results: Sixty-two children with OSA (37 obese and 25 nonobese), age 7.40 +/- 2.6 years (mean +/- SD) completed the study. After adenotonsillectomy, significant improvements in apnea-hypopnea index and sleep fragmentation occurred, particularly among nonobese children. In nonobese children, adenotonsillectomy was associated with mild increases in body mass index z scores, no changes in either fasting glucose or insulin, significant increases in high-density lipoprotein and reciprocal decreases in low-density lipoprotein, and reductions in plasma C-reactive protein and apolipoprotein B levels. In obese children, adenotonsillectomy did not result in body mass index or glucose changes, but was associated with marked improvements in all other measures.
Conclusions: OSA does not appear to induce insulin resistance in nonobese pediatric patients but seems to play a significant role in obese patients. The significant improvements in lipid profiles, C-reactive protein, and apolipoprotein B after adenotonsillectomy in the two groups suggest a pathogenic role for OSA in lipid homeostasis and systemic inflammation independent of the degree of adiposity.
References
-
- O'Brien LM, Holbrook CR, Mervis CB, Klaus CJ, Bruner JL, Raffield TJ, Rutherford J, Mehl RC, Wang M, Tuell A, et al. Sleep and neurobehavioral characteristics of 5- to 7-year-old children with parentally reported symptoms of attention-deficit/hyperactivity disorder. Pediatrics 2003;111:554–563. - PubMed
-
- Schlaud M, Urschitz MS, Urschitz-Duprat PM, Poets CF. The German study on sleep-disordered breathing in primary school children: epidemiological approach, representativeness of study sample, and preliminary screening results. Paediatr Perinat Epidemiol 2004;18:431–440. - PubMed
-
- Kaditis AG, Finder J, Alexopoulos EI, Starantzis K, Tanou K, Gampeta S, Agorogiannis E, Christodoulou S, Pantazidou A, Gourgoulianis K, et al. Sleep-disordered breathing in 3,680 Greek children. Pediatr Pulmonol 2004;37:499–509. - PubMed
-
- Montgomery-Downs HE, O'Brien LM, Holbrook CR, Gozal D. Snoring and sleep-disordered breathing in young children: subjective and objective correlates. Sleep 2004;27:87–94. - PubMed
-
- Blunden S, Lushington K, Lorenzen B, Wong J, Balendran R, Kennedy D. Symptoms of sleep breathing disorders in children are underreported by parents at general practice visits. Sleep Breath 2003;7:167–176. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
