Bayes optimality in linear discriminant analysis
- PMID: 18276970
- DOI: 10.1109/TPAMI.2007.70717
Bayes optimality in linear discriminant analysis
Abstract
We present an algorithm which provides the one-dimensional subspace where the Bayes error is minimized for the C class problem with homoscedastic Gaussian distributions. Our main result shows that the set of possible one-dimensional spaces v, for which the order of the projected class means is identical, defines a convex region with associated convex Bayes error function g(v). This allows for the minimization of the error function using standard convex optimization algorithms. Our algorithm is then extended to the minimization of the Bayes error in the more general case of heteroscedastic distributions. This is done by means of an appropriate kernel mapping function. This result is further extended to obtain the d-dimensional solution for any given d, by iteratively applying our algorithm to the null space of the (d - 1)-dimensional solution. We also show how this result can be used to improve up on the outcomes provided by existing algorithms, and derive a low-computational cost, linear approximation. Extensive experimental validations are provided to demonstrate the use of these algorithms in classification, data analysis and visualization.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources