Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Sep 15;157(2-3):432-40.
doi: 10.1016/j.jhazmat.2008.01.006. Epub 2008 Jan 11.

Immobilization of aqueous Hg(II) by mackinawite (FeS)

Affiliations

Immobilization of aqueous Hg(II) by mackinawite (FeS)

Jianrong Liu et al. J Hazard Mater. .

Abstract

As one of the major constituents of acid volatile sulfide (AVS) in anoxic sediments, mackinawite (FeS) is known for its ability to scavenge trace metals. The interaction between aqueous Hg(II) (added as HgCl(2)) and synthetic FeS was studied via batch sorption experiments conducted under anaerobic conditions. Due to the release of H(+) during formation of hydrolyzed Hg(II) species which is more reactive than Hg(2+) in surface adsorption, the equilibrium pH decreased with the increase in Hg(II)/FeS molar ratio. Counteracting the loss of FeS solids at lower pH, the maximum capacity for FeS to remove aqueous Hg(II) was approximately 0.75 mol Hg(II) (mol FeS)(-1). The comparison of X-ray power diffraction (XRPD) patterns of synthetic FeS sorbent before and after sorption showed that the major products formed from the interaction between FeS and the aqueous Hg(II) were metacinnabar, cinnabar, and mercury iron sulfides. With the addition of FeS at 0.4 g L(-1) to a 1 mM Hg(II) solution with an initial pH of 5.6, Fe(2+) release was approximately 0.77 mol Fe(2+) per mol Hg(II) removed, suggesting that 77% of Hg(II) was removed via precipitation reaction under these conditions, with 23% of Hg(II) removed by adsorption. Aeration does not cause significant release of Hg(II) into the water phase.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources