Correlation between beta-catenin mutations and expression of Wnt-signaling target genes in hepatocellular carcinoma
- PMID: 18282277
- PMCID: PMC2287186
- DOI: 10.1186/1476-4598-7-21
Correlation between beta-catenin mutations and expression of Wnt-signaling target genes in hepatocellular carcinoma
Abstract
Aberrant Wnt-signaling caused by mutants of beta-catenin, a key regulator of the canonical Wnt-signaling pathway, is frequently detected in cancer. Only recently, it was suggested that in hepatocellular carcinoma (HCC) the expression of the target gene glutamine synthetase (GS) is a highly reliable marker for the identification of beta-catenin mutations. In order to prove this hypothesis, 52 samples from human hepatocellular carcinomas were analysed for the activation of beta-catenin and the expression of GS. In total, 45 samples stained positive for cytoplasmic/nuclear beta-catenin. A strong correlation between expression of GS and activated beta-catenin (100% of nuclear and 84% of cytosolic) was found. However, among 35 GS positive tumors that were analysed for beta-catenin mutations no mutations were detected in 25 GS-positive carcinomas although 24 out of the 25 carcinomas exhibited at least abnormal expression of beta-catenin. Since the mutational analysis identified 9 different point mutations of the beta-catenin gene including the rare mutation H36P and the yet unknown mutation P44A it was asked whether these mutations may differently effect beta-catenin target genes. Therefore, expression plasmids for different mutations were constructed and cotransfected with the TOP-flash luciferase reporter and a reporter carrying the GS-5'-enhancer. The experiments confirmed that there are differences between different beta-catenin target sequences and different beta-catenin mutations. In addition, the failure that the endogenous expression of GS in GS-negative cells was not induced by the transient transfection experiment indicated that the effect of beta-catenin on the GS-5'-enhancer is only one aspect of gene activation induced by beta-catenin.
Figures




References
-
- A. LC, Romagnolo B, Billuart P, Renard CA, Buendia MA, Soubrane O, Fabre M, Chelly J, Beldjord C, Kahn A, Perret C. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci U S A. 1998;95:8847–8851. doi: 10.1073/pnas.95.15.8847. - DOI - PMC - PubMed
-
- Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa N, Nishiwaki T, Kawasoe T, Ishiguro H, Fujita M, Tokino T, Sasaki Y, Imaoka S, Murata M, Shimano T, Yamaoka Y, Nakamura Y. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet. 2000;24:245–250. doi: 10.1038/73448. - DOI - PubMed
-
- Miyoshi Y, Iwao K, Nagasawa Y, Aihara T, Sasaki Y, Imaoka S, Murata M, Shimano T, Nakamura Y. Activation of the beta-catenin gene in primary hepatocellular carcinomas by somatic alterations involving exon 3. Cancer Res. 1998;58:2524–2527. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources