Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008;5(1):49-55.
doi: 10.1177/1740774507087554.

Ensuring trial validity by data quality assurance and diversification of monitoring methods

Affiliations

Ensuring trial validity by data quality assurance and diversification of monitoring methods

Colin Baigent et al. Clin Trials. 2008.

Abstract

Errors in the design, the conduct, the data collection process, and the analysis of a randomized trial have the potential to affect not only the safety of the patients in the trial, but also, through the introduction of bias, the safety of future patients. Trial monitoring, defined broadly to include methods of oversight which begin when the study is designed and continue until it is reported in a publication, has a role to play in eliminating such errors. On-site monitoring can be extremely inefficient for the identification of errors most likely to compromise patient safety or bias study results. However, a variety of other monitoring strategies offer alternatives to on-site monitoring. Each new trial should conduct a risk assessment to identify the optimal means of monitoring, taking into account the likely sources of error, their consequences for patients, the study's validity, and the available resources. Trial management committees should consider central statistical monitoring a key aspect of such monitoring. The systematic application of this approach would be likely to lead to tangible benefits, and resources that are currently wasted on inefficient on-site monitoring could be diverted to increasing trial sample sizes or conducting more trials.

PubMed Disclaimer

MeSH terms

LinkOut - more resources