Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Apr;57(4):889-98.
doi: 10.2337/db07-1669. Epub 2008 Feb 19.

Peroxynitrite mediates retinal neurodegeneration by inhibiting nerve growth factor survival signaling in experimental and human diabetes

Affiliations

Peroxynitrite mediates retinal neurodegeneration by inhibiting nerve growth factor survival signaling in experimental and human diabetes

Tayyeba K Ali et al. Diabetes. 2008 Apr.

Abstract

Objective: Recently we have shown that diabetes-induced retinal neurodegeneration positively correlates with oxidative stress and peroxynitrite. Studies also show that peroxynitrite impairs nerve growth factor (NGF) survival signaling in sensory neurons. However, the causal role of peroxynitrite and the impact of tyrosine nitration on diabetes-induced retinal neurodegeneration and NGF survival signaling have not been elucidated.

Research design and methods: Expression of NGF and its receptors was examined in retinas from human and streptozotocin-induced diabetic rats and retinal ganglion cells (RGCs). Diabetic animals were treated with FeTPPS (15 mg x kg(-1) x day(-1) ip), which catalytically decomposes peroxynitrite to nitrate. After 4 weeks of diabetes, retinal cell death was determined by TUNEL assay. Lipid peroxidation and nitrotyrosine were determined using MDA assay, immunofluorescence, and Slot-Blot analysis. Expression of NGF and its receptors was determined by enzyme-linked immunosorbent assay (ELISA), real-time PCR, immunoprecipitation, and Western blot analyses.

Results: Analyses of retinal neuronal death and NGF showed ninefold and twofold increases, respectively, in diabetic retinas compared with controls. Diabetes also induced increases in lipid peroxidation, nitrotyrosine, and the pro-apoptotic p75(NTR) receptor in human and rat retinas. These effects were associated with tyrosine nitration of the pro-survival TrkA receptor, resulting in diminished phosphorylation of TrkA and its downstream target, Akt. Furthermore, peroxynitrite induced neuronal death, TrkA nitration, and activation of p38 mitogen-activated protein kinase (MAPK) in RGCs, even in the presence of exogenous NGF. FeTPPS prevented tyrosine nitration, restored NGF survival signal, and prevented neuronal death in vitro and in vivo.

Conclusions: Together, these data suggest that diabetes-induced peroxynitrite impairs NGF neuronal survival by nitrating TrkA receptor and enhancing p75(NTR) expression.

PubMed Disclaimer

Publication types

MeSH terms