Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Mar 6;452(7183):98-102.
doi: 10.1038/nature06604. Epub 2008 Feb 20.

Hax1-mediated processing of HtrA2 by Parl allows survival of lymphocytes and neurons

Affiliations

Hax1-mediated processing of HtrA2 by Parl allows survival of lymphocytes and neurons

Jyh-Rong Chao et al. Nature. .

Erratum in

  • Nature. 2008 Apr 17;452(7189):900

Abstract

Cytokines affect a variety of cellular functions, including regulation of cell numbers by suppression of programmed cell death. Suppression of apoptosis requires receptor signalling through the activation of Janus kinases and the subsequent regulation of members of the B-cell lymphoma 2 (Bcl-2) family. Here we demonstrate that a Bcl-2-family-related protein, Hax1, is required to suppress apoptosis in lymphocytes and neurons. Suppression requires the interaction of Hax1 with the mitochondrial proteases Parl (presenilin-associated, rhomboid-like) and HtrA2 (high-temperature-regulated A2, also known as Omi). These interactions allow Hax1 to present HtrA2 to Parl, and thereby facilitates the processing of HtrA2 to the active protease localized in the mitochondrial intermembrane space. In mouse lymphocytes, the presence of processed HtrA2 prevents the accumulation of mitochondrial-outer-membrane-associated activated Bax, an event that initiates apoptosis. Together, the results identify a previously unknown sequence of interactions involving a Bcl-2-family-related protein and mitochondrial proteases in the ability to resist the induction of apoptosis when cytokines are limiting.

PubMed Disclaimer

Publication types

MeSH terms