Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Mar 20;161(1):76-86.
doi: 10.1016/j.resp.2008.01.001. Epub 2008 Jan 12.

Physiological mechanisms of hyperventilation during human pregnancy

Affiliations

Physiological mechanisms of hyperventilation during human pregnancy

Dennis Jensen et al. Respir Physiol Neurobiol. .

Abstract

This study examined the role of pregnancy-induced changes in wakefulness (or non-chemoreflex) and central chemoreflex drives to breathe, acid-base balance and female sex hormones in the hyperventilation of human pregnancy. Thirty-five healthy women were studied in the third trimester (TM(3); 36.3+/-1.0 weeks gestation; mean+/-S.D.) and again 20.2+/-7.8 weeks post-partum (PP). An iso-oxic hyperoxic rebreathing procedure was used to evaluate wakefulness and central chemoreflex drives to breathe. At rest, arterialized venous blood was obtained for the estimation of arterial PCO(2) (PaCO(2)) and [H(+)]. Blood for the determination of plasma strong ion difference ([SID]), albumin ([Alb]), as well as serum progesterone ([P(4)]) and 17beta-estradiol ([E(2)]) concentrations was also obtained at rest. Wakefulness and central chemoreflex drives to breathe, [P(4)] and [E(2)], ventilation and V CO(2) increased, whereas PaCO(2) and the central chemoreflex ventilatory recruitment threshold for PCO(2) (VRTCO(2)) decreased from PP to TM(3) (all p<0.01). The reductions in PaCO(2) were not related to the increases in [P(4)] and [E(2)]. The alkalinizing effects of reductions in PaCO(2) and [Alb] were partly offset by the acidifying effects of a reduced [SID], such that arterial [H(+)] was still reduced in TM(3) vs. PP (all p<0.001). A mathematical model of ventilatory control demonstrated that pregnancy-induced changes in wakefulness and central chemoreflex drives to breathe, acid-base balance, V CO(2) and cerebral blood flow account for the reductions in PaCO(2), [H(+)] and VRTCO(2). This is the first study to demonstrate that the hyperventilation and attendant hypocapnia/alkalosis of human pregnancy results from a complex interaction of pregnancy-induced changes in wakefulness and central chemoreflex drives to breathe, acid-base balance, metabolic rate and cerebral blood flow.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources