Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Feb:90 Suppl 1:31-5.
doi: 10.2106/JBJS.G.01183.

Osteocyte-derived sclerostin inhibits bone formation: its role in bone morphogenetic protein and Wnt signaling

Affiliations
Review

Osteocyte-derived sclerostin inhibits bone formation: its role in bone morphogenetic protein and Wnt signaling

Peter ten Dijke et al. J Bone Joint Surg Am. 2008 Feb.

Abstract

Sclerosteosis and Van Buchem disease are rare, high-bone-mass disorders that have been linked to deficiency in the SOST gene, encoding sclerostin. Sclerostin belongs to the DAN family of glycoproteins, of which multiple family members have been shown to antagonize bone morphogenetic protein (BMP) and/or Wnt activity. Sclerostin is specifically expressed by osteocytes and inhibits BMP-induced osteoblast differentiation and ectopic bone formation. Sclerostin binds only weakly to BMPs and does not inhibit direct BMP-induced responses. Instead, sclerostin antagonizes canonical Wnt signaling by binding to Wnt coreceptors, low-density lipoprotein receptor-related protein 5 and 6. Several lipoprotein receptor-related protein-5 mutants that cause the high-bone-mass trait are defective in sclerostin binding. Thus, high bone mass in sclerosteosis and Van Buchem disease may result from increased Wnt signaling due to the absence of or insensitivity to sclerostin.

PubMed Disclaimer

Publication types

MeSH terms