In situ observation of protein phosphorylation by high-resolution NMR spectroscopy
- PMID: 18297086
- DOI: 10.1038/nsmb.1395
In situ observation of protein phosphorylation by high-resolution NMR spectroscopy
Abstract
Although the biological significance of protein phosphorylation in cellular signaling is widely appreciated, methods to directly detect these post-translational modifications in situ are lacking. Here we introduce the application of high-resolution NMR spectroscopy for observing de novo protein phosphorylation in vitro and in Xenopus laevis egg extracts and whole live oocyte cells. We found that the stepwise modification of adjacent casein kinase 2 (CK2) substrate sites within the viral SV40 large T antigen regulatory region proceeded in a defined order and through intermediate substrate release. This kinase mechanism contrasts with a more intuitive mode of CK2 action in which the kinase would remain substrate bound to perform both modification reactions without intermediate substrate release. For cellular signaling pathways, the transient availability of partially modified CK2 substrates could exert important switch-like regulatory functions.
Comment in
-
The tail of mycolic acids.Chem Biol. 2008 Apr;15(4):309-10. doi: 10.1016/j.chembiol.2008.04.001. Chem Biol. 2008. PMID: 18420136
-
Studying posttranslational modifications by in-cell NMR.Chem Biol. 2008 Apr;15(4):311-2. doi: 10.1016/j.chembiol.2008.03.008. Chem Biol. 2008. PMID: 18420137
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
