Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008;46(3):318-22.
doi: 10.1515/CCLM.2008.086.

Suitability of the PAXgene system to stabilize bone marrow RNA in imatinib-resistant patients with chronic myeloid leukemia

Affiliations

Suitability of the PAXgene system to stabilize bone marrow RNA in imatinib-resistant patients with chronic myeloid leukemia

Thomas Ernst et al. Clin Chem Lab Med. 2008.

Abstract

Background: Optimum sample quality is a crucial requirement for molecular monitoring of patients with chronic myeloid leukemia (CML) on therapy. Bedside RNA stabilization systems (e.g., PAXgene) have been developed to inhibit RNA degradation during shipment of samples from the clinical site to the specialized laboratory. In CML, blood but not bone marrow samples have been examined using RNA stabilization in previous studies. Therefore, we sought to investigate the applicability of the PAXgene system for bone marrow samples in CML.

Methods: Simultaneously stabilized blood and bone marrow samples were obtained from 55 imatinib-resistant CML patients to compare RNA yield and purity, expression of two housekeeping genes (total ABL and beta-glucuronidase; GUS) by quantitative reverse-transcriptase polymerase chain reaction, BCR-ABL expression (ratios BCR-ABL/ABL and BCR-ABL/GUS), and BCR-ABL kinase domain mutations analyzed by denaturing high-performance liquid chromatography and direct sequencing.

Results: RNA extraction revealed high-quality RNA derived from both stabilized blood and bone marrow samples. RNA yield was significantly higher in bone marrow (median 9.9 microg RNA/mL bone marrow) than in blood (median 4.3 microg RNA/mL blood) (p=0.0005). The number of housekeeping gene transcripts was comparable in blood and bone marrow (median ABL copies/2 microL cDNA 13,260 vs. 25,590; median GUS copies/2 microL cDNA 35,490 vs. 60,200; n.s.). Further, ratios BCR-ABL/ABL (blood vs. bone marrow, median 47% vs. 57%) and ratios BCR-ABL/GUS (blood vs. bone marrow, median 26% vs. 21%) were not significantly different. Results of mutation analysis corresponded in 51 out of 55 patients (93%), whereas moderate differences were observed in four patients.

Conclusions: We conclude that bone marrow can be effectively stabilized using the PAXgene system and shows concordance with blood in terms of BCR-ABL mRNA quantification and mutation analysis in imatinib-resistant CML patients.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms