Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Mar 27;152(3):785-97.
doi: 10.1016/j.neuroscience.2008.01.013. Epub 2008 Jan 16.

Delivery of interferon-beta to the monkey nervous system following intranasal administration

Affiliations

Delivery of interferon-beta to the monkey nervous system following intranasal administration

R G Thorne et al. Neuroscience. .

Abstract

We determined the nervous system targeting of interferon-beta1b (IFN-beta1b), a 20 kDa protein used to treat the relapsing-remitting form of multiple sclerosis, following intranasal administration in anesthetized, adult cynomolgus monkeys. Five animals received an intranasal bolus of [(125)I]-labeled IFN-beta1b, applied bilaterally to the upper nasal passages. Serial blood samples were collected for 45 min, after which the animals were euthanized by transcardial perfusion-fixation. High resolution phosphor imaging of tissue sections and gamma counting of microdissected tissue were used to obtain the distribution and concentration profiles of [(125)I]-IFN-beta1b in central and peripheral tissues. Intranasal administration resulted in rapid, widespread targeting of nervous tissue. The olfactory bulbs and trigeminal nerve exhibited [(125)I]-IFN-beta1b levels significantly greater than in peripheral organs and at least one order of magnitude higher than any other nervous tissue area sampled. The basal ganglia exhibited highest [(125)I]-IFN-beta1b levels among CNS regions other than the olfactory bulbs. Preferential IFN-beta1b distribution to the primate basal ganglia is a new finding of possible clinical importance. Our study suggests both IFN-beta and IFN-alpha, which share the same receptor, may be bound with relatively high affinity in these structures, possibly offering new insight into a neurovegetative syndrome induced by IFN-alpha therapy and suspected to involve altered dopamine neurotransmission in the basal ganglia. Most importantly, our results suggest intranasally applied macromolecules may bypass the blood-brain barrier and rapidly enter the primate CNS along olfactory- and trigeminal-associated extracellular pathways, as shown previously in the rat. This is the first study to finely detail the central distribution of a labeled protein after intranasal administration in non-human primates.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources