Effects of 4'-chlorodiazepam on cellular excitation-contraction coupling and ischaemia-reperfusion injury in rabbit heart
- PMID: 18304929
- PMCID: PMC2562874
- DOI: 10.1093/cvr/cvn053
Effects of 4'-chlorodiazepam on cellular excitation-contraction coupling and ischaemia-reperfusion injury in rabbit heart
Abstract
Aims: Recent evidence indicates that the activity of energy-dissipating ion channels in the mitochondria can influence the susceptibility of the heart to ischaemia-reperfusion injury. In this study, we describe the effects of 4'-chlorodiazepam (4-ClDzp), a well-known ligand of the mitochondrial benzodiazepine receptor, on the physiology of both isolated cardiomyocytes and intact hearts.
Methods and results: We used current- and voltage-clamp methods to determine the effects of 4-ClDzp on excitation-contraction coupling in isolated rabbit heart cells. At the level of the whole heart, we subjected rabbit hearts to ischaemia/reperfusion in order to determine how 4-ClDzp influenced the susceptibility to arrhythmias and contractile dysfunction. In isolated rabbit cardiomyocytes, 4-ClDzp evoked a significant reduction in the cardiac action potential that was associated with a decrease in calcium currents and peak intracellular calcium transients. In intact perfused normoxic rabbit hearts, 4-ClDzp mediated a dose-dependent negative inotropic response, consistent with the observation that 4-ClDzp was reducing calcium influx. Hearts that underwent 30 min of global ischaemia and 30 min of reperfusion were protected against reperfusion arrhythmias and post-ischaemic contractile impairment when 4-ClDzp (24 microM) was administered throughout the protocol or as a single bolus dose given at the onset of reperfusion. In contrast, hearts treated with cyclosporin-A, a classical blocker of the mitochondrial permeability transition pore, were not protected against reperfusion arrhythmias.
Conclusion: The findings indicate that the effects of 4-ClDzp on both mitochondrial and sarcolemmal ion channels contribute to protection against post-ischaemic cardiac dysfunction. Of clinical relevance, the compound is effective when given upon reperfusion, unlike other pre-conditioning agents.
Figures






References
-
- Veenman L, Gavish M. The peripheral-type benzodiazepine receptor and the cardiovascular system. Implications for drug development. Pharmacol Ther. 2006;110:503–524. - PubMed
-
- Aon MA, Cortassa S, Marban E, O’Rourke B. Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J Biol Chem. 2003;278:44735–44744. - PubMed
-
- Leducq N, Bono F, Sulpice T, Vin V, Janiak P, Fur GL, et al. Role of peripheral benzodiazepine receptors in mitochondrial, cellular, and cardiac damage induced by oxidative stress and ischemia/reperfusion. J Pharmacol Exp Ther. 2003;306:828–837. - PubMed
-
- Chelli B, Falleni A, Salvetti F, Gremigni V, Lucacchini A, Martini C. Peripheral-type benzodiazepine receptor ligands: mitochondrial permeability transition induction in rat cardiac tissue. Biochem Pharmacol. 2001;61:695–705. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources