Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Apr;73(4):321-32.
doi: 10.1002/cyto.a.20531.

Automated gating of flow cytometry data via robust model-based clustering

Affiliations
Free article

Automated gating of flow cytometry data via robust model-based clustering

Kenneth Lo et al. Cytometry A. 2008 Apr.
Free article

Abstract

The capability of flow cytometry to offer rapid quantification of multidimensional characteristics for millions of cells has made this technology indispensable for health research, medical diagnosis, and treatment. However, the lack of statistical and bioinformatics tools to parallel recent high-throughput technological advancements has hindered this technology from reaching its full potential. We propose a flexible statistical model-based clustering approach for identifying cell populations in flow cytometry data based on t-mixture models with a Box-Cox transformation. This approach generalizes the popular Gaussian mixture models to account for outliers and allow for nonelliptical clusters. We describe an Expectation-Maximization (EM) algorithm to simultaneously handle parameter estimation and transformation selection. Using two publicly available datasets, we demonstrate that our proposed methodology provides enough flexibility and robustness to mimic manual gating results performed by an expert researcher. In addition, we present results from a simulation study, which show that this new clustering framework gives better results in terms of robustness to model misspecification and estimation of the number of clusters, compared to the popular mixture models. The proposed clustering methodology is well adapted to automated analysis of flow cytometry data. It tends to give more reproducible results, and helps reduce the significant subjectivity and human time cost encountered in manual gating analysis.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources