Retrotrapezoid nucleus and central chemoreception
- PMID: 18308822
- PMCID: PMC2465196
- DOI: 10.1113/jphysiol.2008.150870
Retrotrapezoid nucleus and central chemoreception
Abstract
The 'distributed chemoreception theory' attributes the central chemoreflex (the stimulation of breathing by CNS acidification) to the cumulative effects of pH on multiple classes of respiratory neurons as well as on their tonic sources of drive. Opinions differ as to how many classes of pH-sensitive neurons contribute to the central chemoreflex but the number of candidates is high and growing fast. The 'specialized chemoreceptor theory', endorsed here, attributes the chemoreflex to a limited number of specialized neurons. These neurons (the central chemoreceptors) would drive a respiratory pattern generator that is not or minimally activated by acidification. In this review we first describe the properties of the retrotrapezoid nucleus (RTN) and argue that this nucleus may contain the most important central chemoreceptors. Next, we subject the assumptions that underlie the distributed chemoreception theory to a critical analysis. We propose several explanations for the apparent contradiction between the two competing theories of central chemoreception. We attribute much of the current controversy to premature extrapolations of the effects of acidification on neurons recorded in vitro (chemosensitivity) and to a semantic confusion between chemosensitivity and chemoreception (the mechanism by which CO(2) or pH activates breathing in vivo).
Figures
References
-
- Amiel J, Laudier B, Attie-Bitach T, de Trang HPL, Gener B, Trochet D, Etchevers H, Ray P, Simonneau M, Vekemans M, Munnich A, Gaultier C, Lyonnet S. Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet. 2003;33:459–461. - PubMed
-
- Bayliss DA, Talley EM, Sirois JE, Lei QB. TASK-1 is a highly modulated pH-sensitive ‘leak’ K+ channel expressed in brainstem respiratory neurons. Resp Physiol. 2001;129:159–174. - PubMed
-
- Dias MB, Nucci TB, Margatho LO, Antunes-Rodrigues J, Gargaglioni LH, Branco LGS. Raphe magnus nucleus is involved in ventilatory but not hypothermic response to CO2. J Appl Physiol. 2007;103:1780–1788. - PubMed
-
- Duprat F, Lauritzen I, Patel A, Honore E. The TASK background K2P channels: chemo- and nutrient sensors. Trends Neurosci. 2007;30:573–580. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources