Two-dimensional movement control using electrocorticographic signals in humans
- PMID: 18310813
- PMCID: PMC2744037
- DOI: 10.1088/1741-2560/5/1/008
Two-dimensional movement control using electrocorticographic signals in humans
Abstract
We show here that a brain-computer interface (BCI) using electrocorticographic activity (ECoG) and imagined or overt motor tasks enables humans to control a computer cursor in two dimensions. Over a brief training period of 12-36 min, each of five human subjects acquired substantial control of particular ECoG features recorded from several locations over the same hemisphere, and achieved average success rates of 53-73% in a two-dimensional four-target center-out task in which chance accuracy was 25%. Our results support the expectation that ECoG-based BCIs can combine high performance with technical and clinical practicality, and also indicate promising directions for further research.
Figures







Similar articles
-
Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.J Vis Exp. 2012 Jun 26;(64):3993. doi: 10.3791/3993. J Vis Exp. 2012. PMID: 22782131 Free PMC article.
-
A brain-computer interface using electrocorticographic signals in humans.J Neural Eng. 2004 Jun;1(2):63-71. doi: 10.1088/1741-2560/1/2/001. Epub 2004 Jun 14. J Neural Eng. 2004. PMID: 15876624 Clinical Trial.
-
Prediction of arm movement trajectories from ECoG-recordings in humans.J Neurosci Methods. 2008 Jan 15;167(1):105-14. doi: 10.1016/j.jneumeth.2007.10.001. Epub 2007 Oct 10. J Neurosci Methods. 2008. PMID: 18022247
-
Brain-computer interfaces using electrocorticographic signals.IEEE Rev Biomed Eng. 2011;4:140-54. doi: 10.1109/RBME.2011.2172408. IEEE Rev Biomed Eng. 2011. PMID: 22273796 Review.
-
Toward electrocorticographic control of a dexterous upper limb prosthesis: building brain-machine interfaces.IEEE Pulse. 2012 Jan;3(1):38-42. doi: 10.1109/MPUL.2011.2175636. IEEE Pulse. 2012. PMID: 22344950 Free PMC article. Review.
Cited by
-
Neural correlates of learning in an electrocorticographic motor-imagery brain-computer interface.Brain Comput Interfaces (Abingdon). 2014 Jul 1;1(3-4):147-157. doi: 10.1080/2326263X.2014.954183. Brain Comput Interfaces (Abingdon). 2014. PMID: 25599079 Free PMC article.
-
Review of the BCI Competition IV.Front Neurosci. 2012 Jul 13;6:55. doi: 10.3389/fnins.2012.00055. eCollection 2012. Front Neurosci. 2012. PMID: 22811657 Free PMC article.
-
Proceedings of the Fourth International Workshop on Advances in Electrocorticography.Epilepsy Behav. 2013 Nov;29(2):259-68. doi: 10.1016/j.yebeh.2013.08.012. Epub 2013 Sep 11. Epilepsy Behav. 2013. PMID: 24034899 Free PMC article.
-
Local temporal correlation common spatial patterns for single trial EEG classification during motor imagery.Comput Math Methods Med. 2013;2013:591216. doi: 10.1155/2013/591216. Epub 2013 Nov 20. Comput Math Methods Med. 2013. PMID: 24348740 Free PMC article.
-
Real-time position reconstruction with hippocampal place cells.Front Neurosci. 2011 Jun 30;5:85. doi: 10.3389/fnins.2011.00085. eCollection 2011. Front Neurosci. 2011. PMID: 21808603 Free PMC article.
References
-
- Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain-computer interfaces for communication and control. Electroenceph Clin Neurophysiol. 2002 June;113(6):767–791. - PubMed
-
- McFarland DJ, Krusienski DM, Sarnacki WA, Wolpaw JR. Society for Neuroscience Abstracts Online. 2006. Reach and grasp function with a noninvasive brain-computer interface in humans.
-
- Taylor DM, Tillery SI, Schwartz AB. Direct cortical control of 3D neuroprosthetic devices. Science. 2002;296:1829–1832. - PubMed
-
- Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP. Instant neural control of a movement signal. Nature. 2002;416(6877):141–142. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources