Interaction of asymmetric ABCC9-encoded nucleotide binding domains determines KATP channel SUR2A catalytic activity
- PMID: 18311911
- PMCID: PMC2743405
- DOI: 10.1021/pr7007847
Interaction of asymmetric ABCC9-encoded nucleotide binding domains determines KATP channel SUR2A catalytic activity
Abstract
Nucleotide binding domains (NBDs) secure ATP-binding cassette (ABC) transporter function. Distinct from traditional ABC transporters, ABCC9-encoded sulfonylurea receptors (SUR2A) form, with Kir6.2 potassium channels, ATP-sensitive K+ (K ATP) channel complexes. SUR2A contains ATPase activity harbored within NBD2 and, to a lesser degree, NBD1, with catalytically driven conformations exerting determinate linkage on the Kir6.2 channel pore. While homodomain interactions typify NBDs of conventional ABC transporters, heterodomain NBD interactions and their functional consequence have not been resolved for the atypical SUR2A protein. Here, nanoscale protein topography mapped assembly of monodisperse purified recombinant SUR2A NBD1/NBD2 domains, precharacterized by dynamic light scattering. Heterodomain interaction produced conformational rearrangements inferred by secondary structural change in circular dichroism, and validated by atomic force and transmission electron microscopy. Physical engagement of NBD1 with NBD2 translated into enhanced intrinsic ATPase activity. Molecular modeling delineated a complemental asymmetry of NBD1/NBD2 ATP-binding sites. Mutation in the predicted catalytic base residue, D834E of NBD1, altered NBD1 ATPase activity disrupting potentiation of catalytic behavior in the NBD1/NBD2 interactome. Thus, NBD1/NBD2 assembly, resolved by a panel of proteomic approaches, provides a molecular substrate that determines the optimal catalytic activity in SUR2A, establishing a paradigm for the structure-function relationship within the K ATP channel complex.
Figures




Similar articles
-
A functional role of the C-terminal 42 amino acids of SUR2A and SUR2B in the physiology and pharmacology of cardiovascular ATP-sensitive K(+) channels.J Mol Cell Cardiol. 2005 Jul;39(1):1-6. doi: 10.1016/j.yjmcc.2004.11.022. Epub 2005 Feb 5. J Mol Cell Cardiol. 2005. PMID: 15978900
-
Mutation in nucleotide-binding domains of sulfonylurea receptor 2 evokes Na-ATP-dependent activation of ATP-sensitive K+ channels: implication for dimerization of nucleotide-binding domains to induce channel opening.Mol Pharmacol. 2004 Oct;66(4):807-16. doi: 10.1124/mol.104.002717. Epub 2004 Jul 16. Mol Pharmacol. 2004. PMID: 15258252
-
Quaternary structure of KATP channel SUR2A nucleotide binding domains resolved by synchrotron radiation X-ray scattering.J Struct Biol. 2010 Feb;169(2):243-51. doi: 10.1016/j.jsb.2009.11.005. Epub 2009 Nov 15. J Struct Biol. 2010. PMID: 19919849 Free PMC article.
-
ATP-sensitive K+ channel channel/enzyme multimer: metabolic gating in the heart.J Mol Cell Cardiol. 2005 Jun;38(6):895-905. doi: 10.1016/j.yjmcc.2005.02.022. Epub 2005 Apr 14. J Mol Cell Cardiol. 2005. PMID: 15910874 Free PMC article. Review.
-
[Activation of ATP-sensitive K+ channels by ADP and K+ channel openers: homology model of sulfonylurea receptor carboxyl-termini].Nihon Yakurigaku Zasshi. 2001 Sep;118(3):177-86. doi: 10.1254/fpj.118.177. Nihon Yakurigaku Zasshi. 2001. PMID: 11577458 Review. Japanese.
Cited by
-
KCNJ11 knockout morula re-engineered by stem cell diploid aggregation.Philos Trans R Soc Lond B Biol Sci. 2009 Jan 27;364(1514):269-76. doi: 10.1098/rstb.2008.0179. Philos Trans R Soc Lond B Biol Sci. 2009. PMID: 18977736 Free PMC article.
-
Human K(ATP) channelopathies: diseases of metabolic homeostasis.Pflugers Arch. 2010 Jul;460(2):295-306. doi: 10.1007/s00424-009-0771-y. Epub 2009 Dec 24. Pflugers Arch. 2010. PMID: 20033705 Free PMC article. Review.
-
KATP channel Kir6.2 E23K variant overrepresented in human heart failure is associated with impaired exercise stress response.Hum Genet. 2009 Dec;126(6):779-89. doi: 10.1007/s00439-009-0731-9. Hum Genet. 2009. PMID: 19685080 Free PMC article.
-
K(ATP) channels process nucleotide signals in muscle thermogenic response.Crit Rev Biochem Mol Biol. 2010 Dec;45(6):506-19. doi: 10.3109/10409238.2010.513374. Epub 2010 Oct 7. Crit Rev Biochem Mol Biol. 2010. PMID: 20925594 Free PMC article.
-
ABCC9/SUR2 in the brain: Implications for hippocampal sclerosis of aging and a potential therapeutic target.Ageing Res Rev. 2015 Nov;24(Pt B):111-25. doi: 10.1016/j.arr.2015.07.007. Epub 2015 Jul 28. Ageing Res Rev. 2015. PMID: 26226329 Free PMC article. Review.
References
-
- Dean M. The genetics of ATP-binding cassette transporters. Methods Enzymol. 2005;400:409–429. - PubMed
-
- Linton KJ. Structure and function of ABC transporters. Physiology (Bethesda) 2007;22:122–130. - PubMed
-
- Higgins CF, Linton KJ. The ATP switch model for ABC transporters. Nat Struct Mol Biol. 2004;11:918–926. - PubMed
-
- Biemans-Oldehinkel E, Doeven MK, Poolman B. ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett. 2006;580:1023–1035. - PubMed
-
- Oram JF, Vaughan AM. ATP-Binding cassette cholesterol transporters and cardiovascular disease. Circ Res. 2006;99:1031–1043. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources