Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 May;28(3):182-8.
doi: 10.1111/j.1475-097X.2008.00795.x. Epub 2008 Feb 25.

Enhanced exercise-induced plasma cytokine response and oxidative stress in COPD patients depend on blood oxygenation

Affiliations

Enhanced exercise-induced plasma cytokine response and oxidative stress in COPD patients depend on blood oxygenation

Yves Jammes et al. Clin Physiol Funct Imaging. 2008 May.

Abstract

In healthy subjects, hypoxemia and exercise represent independent stressors promoting the exercise-induced cytokine response and oxidative stress. We hypothesized that hypoxemia in patients with chronic obstructive pulmonary disease (COPD) may affect the cytokine production and/or the changes in oxidant-antioxidant status in response to maximal exercise. Exercise-induced changes in PaO2 allowed to transiently increase or decrease baseline hypoxemia and to point out its specific action on muscle metabolism. COPD patients with severe to moderate hypoxemia (56 < PaO2 < 72 mmHg) performed an incremental cycling exercise until volitional exhaustion. Two cytokines [interleukin (IL)-6 and tumour necrosis factor (TNF)-alpha] and three blood indices of oxidative stress [plasma thiobarbituric acid reactive substances (TBARS) and two antioxidants, reduced erythrocyte glutathione (GSH), and reduced plasma ascorbic acid, RAA] were measured at rest, then during and after exercise. The changes in the cytokine levels and oxidant-antioxidant status were analysed in relation with the baseline PaO2 and its exercise-induced variations. Data were compared with those obtained in an age- and body mass index-matched group of healthy subjects. Compared with healthy subjects, COPD patients presented a marked accentuation of exercise-induced increase in IL-6 level and earlier changes in their oxidant-antioxidant status. Resting levels of IL-6 and TNF-alpha and exercise-induced peak variations of TBARS, IL-6 and TNF-alpha were negatively correlated with the baseline PaO2. In COPD patients, the peak increases in IL-6 and TBARS were attenuated when exercise hyperventilation reduced the baseline hypoxemia. Our study indicates that the PaO2 level affects both the exercise-induced oxidative stress and cytokine response in hypoxemic COPD patients.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms