Identification of genes potentially involved in supporting hematopoietic stem cell activity of stromal cell line MC3T3-G2/PA6
- PMID: 18317883
- PMCID: PMC2330061
- DOI: 10.1007/s12185-008-0048-9
Identification of genes potentially involved in supporting hematopoietic stem cell activity of stromal cell line MC3T3-G2/PA6
Abstract
Although coculture of hematopoietic stem cells (HSCs) with stromal cells is a useful system to study hematopoiesis in the niche, little is known regarding the precise cellular and molecular mechanisms of maintaining HSCs through cell-cell interactions. The murine preadipose stromal cell line MC3T3-G2/PA6 (PA6) has been demonstrated to support HSCs in vitro. In this study, microarray analysis was performed on PA6 cells and HSC-nonsupporting PA6 subclone cells to identify genes responsible for supporting HSC activity. Comparison of gene expression profiles revealed that only 144 genes were down-regulated by more than twofold in PA6 subclone cells. Of these down-regulated genes, we selected 11 candidate genes and evaluated for the maintenance of HSC function by overexpressing these genes in PA6 subclone cells. One unknown gene, 1110007F12Rik (also named as Tmem140), which is predicted to encode an integral membrane protein, demonstrated a partial restoration of the defect in HSC-supporting activity.
Figures

References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1038/sj.onc.1207942', 'is_inner': False, 'url': 'https://doi.org/10.1038/sj.onc.1207942'}, {'type': 'PubMed', 'value': '15378082', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/15378082/'}]}
- Sauvageau G, Iscove NN, Humphries RK. In vitro and in vivo expansion of hematopoietic stem cells. Oncogene. 2004;23:7223–32. - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1038/nri1487', 'is_inner': False, 'url': 'https://doi.org/10.1038/nri1487'}, {'type': 'PubMed', 'value': '15516967', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/15516967/'}]}
- Sorrentino BP. Clinical strategies for expansion of haematopoietic stem cells. Nat Rev Immunol. 2004;4:878–88. - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '7957709', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/7957709/'}]}
- Knobel KM, McNally MA, Berson AE, et al. Long-term reconstitution of mice after ex vivo expansion of bone marrow cells: differential activity of cultured bone marrow and enriched stem cell populations. Exp Hematol. 1994;22:1227–35. - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '7536685', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/7536685/'}]}
- Peters SO, Kittler EL, Ramshaw HS, Quesenberry PJ. Murine marrow cells expanded in culture with IL-3, IL-6, IL-11, and SCF acquire an engraftment defect in normal hosts. Exp Hematol. 1995;23:461–9. - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '8641356', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/8641356/'}]}
- Traycoff CM, Cornetta K, Yoder MC, Davidson A, Srour EF. Ex vivo expansion of murine hematopoietic progenitor cells generates classes of expanded cells possessing different levels of bone marrow repopulating potential. Exp Hematol. 1996;24:299–306. - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Research Materials