The pharmacological specificity of N-methyl-D-aspartate receptors in rat cerebral cortex: correspondence between radioligand binding and electrophysiological measurements
- PMID: 1832067
- PMCID: PMC1908363
- DOI: 10.1111/j.1476-5381.1991.tb09799.x
The pharmacological specificity of N-methyl-D-aspartate receptors in rat cerebral cortex: correspondence between radioligand binding and electrophysiological measurements
Abstract
1. The pharmacological specificity of N-methyl-D-aspartate (NMDA) receptors has been investigated in the rat cerebral cortex by use of radioligand binding and electrophysiological techniques. 2. A comparison was made between a functional assay (NMDA-induced depolarizations in a rat cortical slice preparation) and NMDA-sensitive L-[3H]-glutamate binding in the same brain region and species, to provide accurate affinity values for agonists and antagonists at the NMDA recognition site. 3. In a preparation of crude postsynaptic densities (PSD) from rat cortex, L-[3H]-glutamate bound with high affinity to an NMDA-sensitive population of sites with KD (geometric mean (-s.e.mean. + s.e. mean) = 120 (114, 126) nM, Bmax (mean +/- s.e.mean) = 11.4 +/- 0.8 pmol mg-1 protein and Hill coefficient (mean +/- s.e.mean) = 1.2 +/- 0.17 (n = 3). 4. There was a good agreement between the relative affinities in radioligand binding and electrophysiological assays for the receptor agonists NMDA, N-methyl-L-aspartate, quinolinate and trans-2,3-piperidine dicarboxylate, which are poor substrates of acidic amino acid transport systems. However, agonists which are good substrates for high affinity uptake systems (L- and D-glutamate, L- and D-aspartate, D-aspartate-beta-hydroxamate and L-glutamate-gamma-hydroxamate) were much weaker in the electrophysiological experiments. 5 Schild analysis of the antagonism of NMDA responses in the rat cortical slice by DL-3(2- carboxypiperazin-4-yl)propyl-1-phosphonate, D- and DL-2-amino-5-phosphonovalerate, D- and DL-2- amino- 7-phosphonoheptanoate, D-beta-aspartylaminomethylphosphonate, D-gamma-glutamylglycine and D-Ofaminoadipate (D-AA) indicated a competitive interaction with respective pA2 values of 6.17, 5.62, 5.24, 5.28, 5.20, 5.00, 4.43 and 3.97. 6 In the radioligand binding experiments the same antagonists inhibited only the NMDA-sensitive component of L-[3H]-glutamate binding. IC50 values showed a good correlation with the pA2 values (correlation coefficient = 0.96), with the exception of D-AA which was more potent than anticipated in the binding experiments (IC50 = 9.8 microM).7 These results confirm that NMDA-sensitive L-[3H]-glutamate binding sites represent the NMDA recognition site of the NMDA receptor and provide affinity values for both agonists and antagonists in the rat cerebral cortex, agreeing well with previous estimates in this and other tissues.
Similar articles
-
Regionally different N-methyl-D-aspartate receptors distinguished by ligand binding and quantitative autoradiography of [3H]-CGP 39653 in rat brain.Br J Pharmacol. 1996 Nov;119(5):819-28. doi: 10.1111/j.1476-5381.1996.tb15746.x. Br J Pharmacol. 1996. PMID: 8922727 Free PMC article.
-
CGP 37849 and CGP 39551: novel and potent competitive N-methyl-D-aspartate receptor antagonists with oral activity.Br J Pharmacol. 1990 Apr;99(4):791-7. doi: 10.1111/j.1476-5381.1990.tb13008.x. Br J Pharmacol. 1990. PMID: 1972895 Free PMC article.
-
Kynurenic acid analogues with improved affinity and selectivity for the glycine site on the N-methyl-D-aspartate receptor from rat brain.Mol Pharmacol. 1992 May;41(5):914-22. Mol Pharmacol. 1992. PMID: 1375317
-
Acidic amino acid binding sites in mammalian neuronal membranes: their characteristics and relationship to synaptic receptors.Brain Res. 1984 May;319(2):103-64. doi: 10.1016/0165-0173(84)90020-1. Brain Res. 1984. PMID: 6145511 Review.
-
Neurochemical aspects of the N-methyl-D-aspartate receptor complex.Neurosci Res. 1991 Feb;10(1):1-33. doi: 10.1016/0168-0102(91)90017-s. Neurosci Res. 1991. PMID: 1851975 Review.
Cited by
-
Identification of Non-excitatory Amino Acids and Transporters Mediating the Irreversible Synaptic Silencing After Hypoxia.Transl Stroke Res. 2024 Dec;15(6):1070-1087. doi: 10.1007/s12975-023-01192-y. Epub 2023 Sep 27. Transl Stroke Res. 2024. PMID: 37755645
-
Regionally different N-methyl-D-aspartate receptors distinguished by ligand binding and quantitative autoradiography of [3H]-CGP 39653 in rat brain.Br J Pharmacol. 1996 Nov;119(5):819-28. doi: 10.1111/j.1476-5381.1996.tb15746.x. Br J Pharmacol. 1996. PMID: 8922727 Free PMC article.
-
Activation and desensitization of N-methyl-D-aspartate receptors in nucleated outside-out patches from mouse neurones.J Physiol. 1992 May;450:643-72. doi: 10.1113/jphysiol.1992.sp019148. J Physiol. 1992. PMID: 1359126 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources