Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Mar 26;130(12):4081-8.
doi: 10.1021/ja710787a. Epub 2008 Mar 6.

Controlling a single protein in a nanopore through electrostatic traps

Affiliations

Controlling a single protein in a nanopore through electrostatic traps

Mohammad M Mohammad et al. J Am Chem Soc. .

Abstract

Protein-protein pore interaction is a fundamental and ubiquitous process in biology and medical biotechnology. Here, we employed high-resolution time-resolved single-channel electrical recording along with protein engineering to examine a protein-protein pore interaction at single-molecule resolution. The pore was formed by Staphylococcus aureus alpha-hemolysin (alphaHL) protein and contained electrostatic traps formed by rings of seven aspartic acid residues placed at two different positions within the pore lumen. The protein analytes were positively charged presequences (pb2) of varying length fused to the small ribonuclease barnase (Ba). The presence of the electrostatic traps greatly enhanced the interaction of the pb2-Ba protein with the alphaHL protein pore. This study demonstrates the high sensitivity of the nanopore technique to an array of factors that govern the protein-protein pore interaction, including the length of the pb2 presequence, the position of the electrostatic traps within the pore lumen, the ionic strength of the aqueous phase, and the transmembrane potential. Alterations in the functional properties of the pb2-Ba protein and the alphaHL protein pore and systematic changes of the experimental parameters revealed the balance between forces driving the pb2-Ba protein into the pore and forces driving it out.

PubMed Disclaimer

Publication types

LinkOut - more resources