Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 May;294(5):F1136-45.
doi: 10.1152/ajprenal.00396.2007. Epub 2008 Mar 5.

LOX-1 and inflammation: a new mechanism for renal injury in obesity and diabetes

Affiliations
Free article

LOX-1 and inflammation: a new mechanism for renal injury in obesity and diabetes

Katherine J Kelly et al. Am J Physiol Renal Physiol. 2008 May.
Free article

Abstract

The early nephropathy in obese, diabetic, dyslipidemic (ZS) rats is characterized by tubular lipid accumulation and pervasive inflammation, two critically interrelated events. We now tested the hypothesis that proximal tubules from ZS obese diabetic rats in vivo, and proximal tubule cells (NRK52E) exposed to oxidized LDL (oxLDL) in vitro, change their normally quiescent epithelial phenotype into a proinflammatory phenotype. Urine of obese diabetic rats contained more lipid peroxides, and LOX-1, a membrane receptor that internalizes oxidized lipids, was mobilized to luminal sites. Levels of ICAM-1 and focal adhesion kinase, which participate in leukocyte migration and epithelial dedifferentiation, respectively, were also upregulated in tubules. NRK52E cells exposed to oxLDL showed similar modifications, plus suppression of anti-inflammatory transcription factor peroxisome proliferator-activated receptor-delta. In addition, oxLDL impaired epithelial barrier function. These alterations were prevented by an anti-LOX-1 antibody. The data support the concept that tubular LOX-1 activation driven by lipid oxidants in the preurine fluid is critical in the inflammatory changes. We suggest that luminal lipid oxidants and abnormal tubular permeability may be partly responsible for the renal tubulointerstitial injury of obesity, diabetes, and dyslipidemia.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources