Computer-based classification of dermoscopy images of melanocytic lesions on acral volar skin
- PMID: 18323788
- DOI: 10.1038/jid.2008.28
Computer-based classification of dermoscopy images of melanocytic lesions on acral volar skin
Abstract
We describe a fully automated system for the classification of acral volar melanomas. We used a total of 213 acral dermoscopy images (176 nevi and 37 melanomas). Our automatic tumor area extraction algorithm successfully extracted the tumor in 199 cases (169 nevi and 30 melanomas), and we developed a diagnostic classifier using these images. Our linear classifier achieved a sensitivity (SE) of 100%, a specificity (SP) of 95.9%, and an area under the receiver operating characteristic curve (AUC) of 0.993 using a leave-one-out cross-validation strategy (81.1% SE, 92.1% SP; considering 14 unsuccessful extraction cases as false classification). In addition, we developed three pattern detectors for typical dermoscopic structures such as parallel ridge, parallel furrow, and fibrillar patterns. These also achieved good detection accuracy as indicated by their AUC values: 0.985, 0.931, and 0.890, respectively. The features used in the melanoma-nevus classifier and the parallel ridge detector have significant overlap.
Similar articles
-
Clinical and Histopathologic Characteristics of Melanocytic Lesions on the Volar Skin Without Typical Dermoscopic Patterns.JAMA Dermatol. 2019 May 1;155(5):578-584. doi: 10.1001/jamadermatol.2018.5926. JAMA Dermatol. 2019. PMID: 30865233 Free PMC article.
-
Key points in dermoscopic differentiation between early acral melanoma and acral nevus.J Dermatol. 2011 Jan;38(1):25-34. doi: 10.1111/j.1346-8138.2010.01174.x. J Dermatol. 2011. PMID: 21175752 Review.
-
Significance of dermoscopic patterns in detecting malignant melanoma on acral volar skin: results of a multicenter study in Japan.Arch Dermatol. 2004 Oct;140(10):1233-8. doi: 10.1001/archderm.140.10.1233. Arch Dermatol. 2004. PMID: 15492186
-
Early acral melanoma in situ: correlation between the parallel ridge pattern on dermoscopy and microscopic features.Am J Dermatopathol. 2006 Feb;28(1):21-7. doi: 10.1097/01.dad.0000187931.05030.a0. Am J Dermatopathol. 2006. PMID: 16456320
-
The morphologic universe of melanocytic nevi.Semin Cutan Med Surg. 2009 Sep;28(3):149-56. doi: 10.1016/j.sder.2009.06.005. Semin Cutan Med Surg. 2009. PMID: 19782938 Review.
Cited by
-
Computer Based Melanocytic and Nevus Image Enhancement and Segmentation.Biomed Res Int. 2016;2016:2082589. doi: 10.1155/2016/2082589. Epub 2016 Sep 28. Biomed Res Int. 2016. PMID: 27774454 Free PMC article.
-
Acral melanoma detection using dermoscopic images and convolutional neural networks.Vis Comput Ind Biomed Art. 2021 Oct 7;4(1):25. doi: 10.1186/s42492-021-00091-z. Vis Comput Ind Biomed Art. 2021. PMID: 34618260 Free PMC article.
-
Computer-assisted diagnosis techniques (dermoscopy and spectroscopy-based) for diagnosing skin cancer in adults.Cochrane Database Syst Rev. 2018 Dec 4;12(12):CD013186. doi: 10.1002/14651858.CD013186. Cochrane Database Syst Rev. 2018. PMID: 30521691 Free PMC article.
-
Incorporating Colour Information for Computer-Aided Diagnosis of Melanoma from Dermoscopy Images: A Retrospective Survey and Critical Analysis.Int J Biomed Imaging. 2016;2016:4868305. doi: 10.1155/2016/4868305. Epub 2016 Dec 19. Int J Biomed Imaging. 2016. PMID: 28096807 Free PMC article. Review.
-
The Use of Artificial Intelligence for Skin Cancer Detection in Asia-A Systematic Review.Diagnostics (Basel). 2025 Apr 7;15(7):939. doi: 10.3390/diagnostics15070939. Diagnostics (Basel). 2025. PMID: 40218289 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical