Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Mar;14(3):429-35.
doi: 10.3201/eid1403.071057.

Integrated food chain surveillance system for Salmonella spp. in Mexico

Affiliations

Integrated food chain surveillance system for Salmonella spp. in Mexico

Mussaret B Zaidi et al. Emerg Infect Dis. 2008 Mar.

Abstract

Few developing countries have foodborne pathogen surveillance systems, and none of these integrates data from humans, food, and animals. We describe the implementation of a 4-state, integrated food chain surveillance system (IFCS) for Salmonella spp. in Mexico. Significant findings were 1) high rates of meat contamination (21.3%-36.4%), 2) high rates of ceftriaxone-resistant S. Typhimurium in chicken, ill humans, and swine (77.3%, 66.3%, and 40.4% of S. Typhimurium T isolates, respectively), and 3) the emergence of ciprofloxacin resistance in S. Heidelberg (10.4%) and S. Typhimurium (1.7%) from swine. A strong association between Salmonella spp. contamination in beef and asymptomatic Salmonella spp. infection was only observed in the state with the lowest poverty level (Pearson r = 0.91, p<0.001). Pulsed-field gel electrophoresis analysis of 311 S. Typhimurium isolates showed 14 clusters with 102 human, retail meat, and food-animal isolates with indistinguishable patterns. An IFCS is technically and economically feasible in developing countries and can effectively identify major public health priorities.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Percentage of human, retail meat, and food-animal samples positive for Salmonella spp. detected by an integrated food chain system in Mexico, 2002–2005. Numbers to the right of bars indicate average values, and numbers in parentheses indicate the frequency of positive samples in the states with the lowest and highest prevalence, respectively. The number of specimens examined from each source (n) is shown next to each source heading.
Figure 2
Figure 2
Selected pulsed-field gel electrophoresis (PFGE) clusters that represent 102 strains of Salmonella Typhimurium and shared indistinguishable PFGE patterns among humans (H), chicken meat and intestine (C), pork meat and swine intestine (P), and beef meat and cattle intestine (B). Several clusters (C,D, E, and L) were present in more than one state. MI, Michoacan; SLP, San Luis Potosi; SO, Sonora; YU, Yucatan. An expanded version of this figure containing the complete set of PFGE patterns is available from http://www.cdc.gov/EID/content/14/3/429-G2.htm.

References

    1. Kosek M, Bern C, Guerrant RL. The global burden of diarrhoeal disease, as estimated from studies published between 1992 and 2000. Bull World Health Organ. 2003;81:197–204. - PMC - PubMed
    1. World Health Organization. Strategy for food safety: safer food for better health. Geneva: The Organization; 2002.
    1. Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, et al. Food-related illness and death in the United States. Emerg Infect Dis. 1999;5:607–25. - PMC - PubMed
    1. Batz MB, Doyle MP, Morris JG Jr, Painter J, Singh R, Tauxe RV, et al. Attributing illness to food. Emerg Infect Dis. 2005;11:993–9. - PMC - PubMed
    1. Zaidi MB, McDermott PF, Fedorka-Cray P, Leon V, Canche C, Hubert SK, et al. Nontyphoidal Salmonella from human clinical cases, asymptomatic children, and raw retail meats in Yucatan, Mexico. Clin Infect Dis. 2006;42:21–8. 10.1086/498508 - DOI - PubMed

Publication types

Substances