Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Mar;134(3):756-67.
doi: 10.1053/j.gastro.2007.12.008. Epub 2007 Dec 7.

Hypoxia-independent activation of HIF-1 by enterobacteriaceae and their siderophores

Affiliations

Hypoxia-independent activation of HIF-1 by enterobacteriaceae and their siderophores

Hanna Hartmann et al. Gastroenterology. 2008 Mar.

Abstract

Background & aims: Hypoxia inducible factor-1 (HIF-1) is the key transcriptional regulator during adaptation to hypoxia. Recent studies provide evidence for HIF-1 activation during bacterial infections. However, molecular details of how bacteria activate HIF-1 remain unclear. Here, we pursued the role of bacterial siderophores in HIF-1 activation during infection with Enterobacteriaceae.

Methods: In vivo, HIF-1 activation and HIF-1-dependent gene induction in Peyer's patches were analyzed after orogastric infection with Yersinia enterocolitica. The course of an orogastric Y enterocolitica infection was determined using mice with a deletion of HIF-1alpha in the intestine. In vitro, the mechanism of HIF-1 activation was analyzed in infections with Y enterocolitica, Salmonella enterica subsp enterica, and Enterobacter aerogenes.

Results: Infection of mice with Y enterocolitica led to functional activation of HIF-1 in Peyer's patches. Because mice with deletion of HIF-1alpha in the intestinal epithelium showed a significantly higher susceptibility to orogastric Y enterocolitica infections, bacterial HIF-1 activation appears to represent a host defense mechanism. Additional studies with Y enterocolitica, S enterica subsp enterica, or E aerogenes, and, moreover, application of their siderophores (yersiniabactin, salmochelin, aerobactin) caused a robust, dose-dependent HIF-1 response in human epithelia and endothelia, independent of cellular hypoxia. HIF-1 activation occurs most likely because of inhibition of prolylhydroxylase activity and is abolished upon infection with siderophore uptake deficient bacteria.

Conclusions: Taken together, this study reveals what we believe to be a previously unrecognized role of bacterial siderophores for hypoxia-independent activation of HIF-1 during infection with human pathogenic bacteria.

PubMed Disclaimer

Publication types

MeSH terms