Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Mar;24(3):290-6.
doi: 10.1051/medsci/2008243290.

[Aberrant regulation of mRNA 3' untranslated region in cancers and inflammation]

[Article in French]
Affiliations
Free article
Review

[Aberrant regulation of mRNA 3' untranslated region in cancers and inflammation]

[Article in French]
Mai Nguyen-Chi et al. Med Sci (Paris). 2008 Mar.
Free article

Abstract

Almost 10% of mammalian coding mRNAs contain in their 3' untranslated region a sequence rich in adenine and uridine residues known as AU-rich element (ARE). Many of them encode oncogenes (for instance c-Myc and c-Fos), cell cycle regulators (cyclin D1, A1, B1), cytokines (TNFalpha, IL2) and growth factors (GM-CSF) which are overexpressed in cancer or inflammatory diseases due to increased mRNA stability and/or translation. AREs are recognized by a group of proteins, collectively called AUBPs which display various functions. For instance, HuR/ELAV is mainly known to protect ARE-containing mRNAs from degradation, while AUF1, TTP and KSRP act to destabilize their bound target mRNAs and TIA/TIAR to inhibit their translation. Alterations in ARE sequences or AUBP abundance, cellular localization or activity due to post-translational modifications such as phosphorylation can promote or enhance malignancy or perturb immune homeostasis. Here, c-myc and TNFalpha are chosen as examples to illustrate how altered 3' UTR gene regulation impacts on pathologies.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources