Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Feb;55(2):343-58.
doi: 10.1109/TUFFC.2008.653.

Narrowband shear wave generation by a Finite-Amplitude radiation force: The fundamental component

Affiliations

Narrowband shear wave generation by a Finite-Amplitude radiation force: The fundamental component

Alexia Giannoula et al. IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Feb.

Abstract

A highly localized source of low-frequency shear waves can be created by the modulated radiation force resulting from two intersecting quasi-continuous-wave ultrasound beams of slightly different frequencies. In contrast to most other radiation force-based methods, these shear waves can be narrowband. Consequently, different frequency-dependent effects will not significantly affect their spectrum as they propagate within a viscoelastic medium, thereby enabling the viscoelastic shear properties of the medium to be determined at any given modulation frequency. This can be achieved by tracking the shear wave phase delay and change in amplitude over a specific distance. In this paper we explore the properties of short duration (dynamic) low-frequency shear wave propagation and study how the shear displacement field depends on the excitation conditions. Our investigations make use of the approximate Green's functions for viscoelastic media, and the evolution of such waves is studied in the spatiotemporal domain from a theoretical perspective. Although nonlinearities are included in our confocal source model, just the properties of the fundamental shear component are examined in this paper. We examine how the shear wave propagation is affected by the shear viscosity, the coupling wave, the spatial distribution of the force, the shear speed, and the duration of the modulated wave. A method is proposed for estimating the shear viscosity of a viscoelastic medium. In addition, it is shown how the Voigt model paremeters can be extracted from the frequency-dependent speed and attenuation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources