Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Feb;9(1):28-38.
doi: 10.2174/138920308783565705.

Proteins as networks: usefulness of graph theory in protein science

Affiliations
Review

Proteins as networks: usefulness of graph theory in protein science

Arun Krishnan et al. Curr Protein Pept Sci. 2008 Feb.

Abstract

The network paradigm is based on the derivation of emerging properties of studied systems by their representation as oriented graphs: any system is traced back to a set of nodes (its constituent elements) linked by edges (arcs) correspondent to the relations existing between the nodes. This allows for a straightforward quantitative formalization of systems by means of the computation of mathematical descriptors of such graphs (graph theory). The network paradigm is particularly useful when it is clear which elements of the modelled system must play the role of nodes and arcs respectively, and when topological constraints have a major role with respect to kinetic ones. In this review we demonstrate how nodes and arcs of protein topology are characterized at different levels of definition: 1. Recurrence matrix of hydrophobicity patterns along the sequence 2. Contact matrix of alpha carbons of 3D structures 3. Correlation matrix of motions of different portion of the molecule in molecular dynamics. These three conditions represent different but potentially correlated reticular systems that can be profitably analysed by means of network analysis tools.

PubMed Disclaimer

Publication types

LinkOut - more resources