Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 May;99(5):2264-80.
doi: 10.1152/jn.00704.2007. Epub 2008 Mar 12.

Body-tilt and visual verticality perception during multiple cycles of roll rotation

Affiliations
Free article

Body-tilt and visual verticality perception during multiple cycles of roll rotation

R A A Vingerhoets et al. J Neurophysiol. 2008 May.
Free article

Abstract

To assess the effects of degrading canal cues for dynamic spatial orientation in human observers, we tested how judgments about visual-line orientation in space (subjective visual vertical task, SVV) and estimates of instantaneous body tilt (subjective body-tilt task, SBT) develop in the course of three cycles of constant-velocity roll rotation. These abilities were tested across the entire tilt range in separate experiments. For comparison, we also obtained SVV data during static roll tilt. We found that as tilt increased, dynamic SVV responses became strongly biased toward the head pole of the body axis (A-effect), as if body tilt was underestimated. However, on entering the range of near-inverse tilts, SVV responses adopted a bimodal pattern, alternating between A-effects (biased toward head-pole) and E-effects (biased toward feet-pole). Apart from an onset effect, this tilt-dependent pattern of systematic SVV errors repeated itself in subsequent rotation cycles with little sign of worsening performance. Static SVV responses were qualitatively similar and consistent with previous reports but showed smaller A-effects. By contrast, dynamic SBT errors were small and unimodal, indicating that errors in visual-verticality estimates were not caused by errors in body-tilt estimation. We discuss these results in terms of predictions from a canal-otolith interaction model extended with a leaky integrator and an egocentric bias mechanism. We conclude that the egocentric-bias mechanism becomes more manifest during constant velocity roll-rotation and that perceptual errors due to incorrect disambiguation of the otolith signal are small despite the decay of canal signals.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources