Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2008 May;74(9):2902-7.
doi: 10.1128/AEM.02161-07. Epub 2008 Mar 14.

Innovative methods for soil DNA purification tested in soils with widely differing characteristics

Affiliations
Comparative Study

Innovative methods for soil DNA purification tested in soils with widely differing characteristics

Marketa Sagova-Mareckova et al. Appl Environ Microbiol. 2008 May.

Abstract

Seven methods of soil DNA extraction and purification were tested in a set of 14 soils differing in bedrock, texture, pH, salinity, moisture, organic matter content, and vegetation cover. The methods introduced in this study included pretreatment of soil with CaCO(3) or purification of extracted DNA by CaCl(2). The performance of innovated methods was compared to that of the commercial kit Mo Bio PowerSoil and the phenol-chloroform-based method of D. N. Miller, J. E. Bryant, E. L. Madsen, and W. C. Ghiorse (Appl. Environ. Microbiol. 65:4715-4724, 1999). This study demonstrated significant differences between the tested methods in terms of DNA yield, PCR performance, and recovered bacterial diversity. The differences in DNA yields were correlated to vegetation cover, soil pH, and clay content. The differences in PCR performances were correlated to vegetation cover and soil pH. The innovative methods improved PCR performance in our set of soils, in particular for forest acidic soils. PCR was successful in 95% of cases by the method using CaCl(2) purification and in 93% of cases by the method based on CaCO(3) pretreatment, but only in 79% by Mo Bio PowerSoil, for our range of soils. Also, the innovative methods recovered a higher percentage of actinomycete diversity from a subset of three soils. Recommendations include the assessment of soil characteristics prior to selecting the optimal protocol for soil DNA extraction and purification.

PubMed Disclaimer

Figures

FIG. 1.
FIG. 1.
(A) DNA yield averages (μg·g−1) (dry weight) of soil from sites with different vegetation cover. (For respective standard deviations of the three measurements, see Table S1 in the supplemental material.) Abbreviations (Methods) stand for DNA extraction methods (see Materials and Methods). (B) Numbers of bacteria in different types of vegetation cover. Data are from direct counts under a microscope.
FIG. 2.
FIG. 2.
PCR performance. Evaluation of PCR success from three independent reactions. Sites are ordered according to pH (low pH at the top and high pH at the bottom). Abbreviations stand for DNA extraction methods (see Materials and Methods).

References

    1. Abdo, Z., U. M. E. Schüette, S. J. Bent, C. J. Williams, L. J. Forney, and P. Joyce. 2006. Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environ. Microbiol. 8:929-938. - PubMed
    1. Ashelford, K. E., A. J. Weightman, and J. C. Fry. 2002. PRIMROSE: a computer program for generating and estimating the phylogenetic range of 16S rRNA oligonucleotide probes and primers in conjunction with the RDP-II database. Nucleic Acids Res. 30:3481-3489. - PMC - PubMed
    1. Bakken, L. R., and V. Lindahl. 1995. Recovery of bacterial cells from soil, p. 9-27. In J. D. van Elsas and J. T. Trevors (ed.), Nucleic acids in the environment: methods and applications. Springer-Verlag, Heidelberg, Germany.
    1. Braid, M. D., L. M. Daniels, and C. L. Kitts. 2003. Removal of PCR inhibitors from soil DNA by chemical flocculation. J. Microbiol. Methods 52:389-393. - PubMed
    1. Burgmann, H., M. Pesaro, F. Widmer, and J. Zeyer. 2001. A strategy for optimizing quality and quantity of DNA extracted from soil. J. Microbiol. Methods 45:7-20. - PubMed

Publication types