Nitrate-inducible formate dehydrogenase in Escherichia coli K-12. II. Evidence that a mRNA stem-loop structure is essential for decoding opal (UGA) as selenocysteine
- PMID: 1834670
Nitrate-inducible formate dehydrogenase in Escherichia coli K-12. II. Evidence that a mRNA stem-loop structure is essential for decoding opal (UGA) as selenocysteine
Abstract
fdnG, encoding the selenopeptide of Escherichia coli formate dehydrogenase-N, contains an in-frame opal (UGA) codon at amino acid position 196 that directs selenocysteine incorporation. We have identified sequences that contribute to the mRNA context required for decoding this UGA as selenocysteine. We identified a potential stem-loop structure immediately downstream of UGA196 that is comparable in size and structure to a stem-loop predicted to form in fdhF, which encodes the selenopeptide of E. coli formate dehydrogenase-H. Mutational analysis of the fdnG stem-loop structure suggests that it is critical for decoding UGA196 as selenocysteine. Our data indicate that both stability and specific nucleotide sequences of the stem-loop likely contribute to the appropriate mRNA context for selenocysteine incorporation into the fdnG gene product.
Similar articles
-
Nitrate-inducible formate dehydrogenase in Escherichia coli K-12. I. Nucleotide sequence of the fdnGHI operon and evidence that opal (UGA) encodes selenocysteine.J Biol Chem. 1991 Nov 25;266(33):22380-5. J Biol Chem. 1991. PMID: 1834669
-
Targeted insertion of selenocysteine into the alpha subunit of formate dehydrogenase from Methanobacterium formicicum.J Bacteriol. 1992 Feb;174(3):659-63. doi: 10.1128/jb.174.3.659-663.1992. J Bacteriol. 1992. PMID: 1531049 Free PMC article.
-
Features of the formate dehydrogenase mRNA necessary for decoding of the UGA codon as selenocysteine.Proc Natl Acad Sci U S A. 1990 Jun;87(12):4660-4. doi: 10.1073/pnas.87.12.4660. Proc Natl Acad Sci U S A. 1990. PMID: 2141170 Free PMC article.
-
An extended Escherichia coli "selenocysteine insertion sequence" (SECIS) as a multifunctional RNA structure.Biofactors. 2001;14(1-4):61-8. doi: 10.1002/biof.5520140109. Biofactors. 2001. PMID: 11568441 Review.
-
Selenoprotein synthesis: an expansion of the genetic code.Trends Biochem Sci. 1991 Dec;16(12):463-7. doi: 10.1016/0968-0004(91)90180-4. Trends Biochem Sci. 1991. PMID: 1838215 Review.
Cited by
-
Clostridium sticklandii glycine reductase selenoprotein A gene: cloning, sequencing, and expression in Escherichia coli.J Bacteriol. 1992 Nov;174(22):7080-9. doi: 10.1128/jb.174.22.7080-7089.1992. J Bacteriol. 1992. PMID: 1429431 Free PMC article.
-
Analysis of the Escherichia coli genome. III. DNA sequence of the region from 87.2 to 89.2 minutes.Nucleic Acids Res. 1993 Jul 25;21(15):3391-8. doi: 10.1093/nar/21.15.3391. Nucleic Acids Res. 1993. PMID: 8346018 Free PMC article.
-
The hydrogenases and formate dehydrogenases of Escherichia coli.Antonie Van Leeuwenhoek. 1994;66(1-3):57-88. doi: 10.1007/BF00871633. Antonie Van Leeuwenhoek. 1994. PMID: 7747941 Review.
-
Coding from a distance: dissection of the mRNA determinants required for the incorporation of selenocysteine into protein.EMBO J. 1992 Oct;11(10):3759-66. doi: 10.1002/j.1460-2075.1992.tb05461.x. EMBO J. 1992. PMID: 1396569 Free PMC article.
-
Correct assembly of iron-sulfur cluster FS0 into Escherichia coli dimethyl sulfoxide reductase (DmsABC) is a prerequisite for molybdenum cofactor insertion.J Biol Chem. 2011 Apr 29;286(17):15147-54. doi: 10.1074/jbc.M110.213306. Epub 2011 Feb 26. J Biol Chem. 2011. PMID: 21357619 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases