Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Apr 9;82(15-16):884-91.
doi: 10.1016/j.lfs.2008.02.002. Epub 2008 Feb 16.

PPARalpha activators upregulate eNOS activity and inhibit cytokine-induced NF-kappaB activation through AMP-activated protein kinase activation

Affiliations

PPARalpha activators upregulate eNOS activity and inhibit cytokine-induced NF-kappaB activation through AMP-activated protein kinase activation

Toshie Okayasu et al. Life Sci. .

Abstract

Endothelium-derived NO is an important mediator of vascular protection and adhesion molecule expression on the endothelial cell surface is critical for leukocyte recruitment to atherosclerotic lesions. We hypothesized that AMP-activated protein kinase (AMPK) activity is a down-stream mediator of the beneficial effects of PPARalpha activators on vascular endothelial cells. Treatment of human umbilical vein endothelial cells (HUVEC) with fenofibrate or WY14643 resulted in transient activation of AMPK, as monitored by phosphorylation of AMPK and its down-stream target, acetyl-CoA carboxylase. Fenofibrate caused phosphorylation of Akt and eNOS, leading to increased production of NO, and also caused inhibition of cytokine-induced NF-kappaB activation, leading to suppression of expression of adhesion molecule genes. Significant decreases in eNOS activity and NO production in response to fenofibrate were observed in cells treated with AMPK siRNA or with AraA, a pharmacological inhibitor of AMPK. The attenuation of fenofibrate-induced inhibition of NF-kappaB activation was observed in mouse endothelial (SVEC4) cells treated with AMPK siRNA or with AraA. We demonstrated that TNFalpha stimulates IkappaB-alpha phosphorylation through induction of IKK activity, and that fenofibrate inhibits IKK activity and TNFalpha-induced IkappaB-alpha phosphorylation. Our findings suggest that the beneficial effects of PPARalpha activators on endothelial cells such as inhibition of diabetic microangiopathy might be attributed to the induction of AMPK activation beyond its lipid-lowering actions.

PubMed Disclaimer

MeSH terms

LinkOut - more resources