Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Apr;118(1):104-27.
doi: 10.1016/j.pharmthera.2008.01.005. Epub 2008 Feb 15.

Prevention of atrial fibrillation following cardiac surgery: basis for a novel therapeutic strategy based on non-hypoxic myocardial preconditioning

Affiliations
Review

Prevention of atrial fibrillation following cardiac surgery: basis for a novel therapeutic strategy based on non-hypoxic myocardial preconditioning

Ramón Rodrigo et al. Pharmacol Ther. 2008 Apr.

Abstract

Atrial fibrillation is the most common complication of cardiac surgical procedures performed with cardiopulmonary bypass. It contributes to increased hospital length of stay and treatment costs. At present, preventive strategies offer only suboptimal benefits, despite improvements in anesthesia, surgical technique, and medical therapy. The pathogenesis of postoperative atrial fibrillation is considered to be multifactorial. However oxidative stress is a major contributory factor representing the unavoidable consequences of ischemia/reperfusion cycle occurring in this setting. Considerable evidence suggests the involvement of reactive oxygen species (ROS) in the pathogenic mechanism of this arrhythmia. Interestingly, the deleterious consequences of high ROS exposure, such as inflammation, cell death (apoptosis/necrosis) or fibrosis, may be abrogated by a myocardial preconditioning process caused by previous exposure to moderate ROS concentration known to trigger survival response mechanisms. The latter condition may be created by n-3 PUFA supplementation that could give rise to an adaptive response characterized by increased expression of myocardial antioxidant enzymes and/or anti-apoptotic pathways. In addition, a further reinforcement of myocardial antioxidant defenses could be obtained through vitamins C and E supplementation, an intervention also known to diminish enzymatic ROS production. Based on this paradigm, this review presents clinical and experimental evidence supporting the pathophysiological and molecular basis for a novel therapeutic approach aimed to diminish the incidence of postoperative atrial fibrillation through a non-hypoxic preconditioning plus a reinforcement of the antioxidant defense system in the myocardial tissue.

PubMed Disclaimer

Publication types

MeSH terms

Substances