Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jul;103(4):378-84.
doi: 10.1007/s00395-008-0718-z. Epub 2008 Mar 17.

Redox signaling triggers protection during the reperfusion rather than the ischemic phase of preconditioning

Affiliations

Redox signaling triggers protection during the reperfusion rather than the ischemic phase of preconditioning

Turhan Dost et al. Basic Res Cardiol. 2008 Jul.

Abstract

In ischemic preconditioning (IPC) brief ischemia/reperfusion renders the heart resistant to infarction from any subsequent ischemic insult. Protection results from binding of surface receptors by ligands released during the preconditioning ischemia. The downstream pathway involves redox signaling as IPC will not protect in the presence of a free radical scavenger. To determine when in the IPC protocol the redox signaling occurs, seven groups of isolated rabbit hearts were studied. All hearts underwent 30 min of coronary branch occlusion and 2 h of reperfusion. IPC groups were subjected to 5 min of regional ischemia followed by 10 min of reperfusion prior to the 30-min coronary occlusion. The Control group had only the 30-min occlusion and 2-h reperfusion. In the second group IPC preceded the index coronary occlusion. The third group was also preconditioned, but the free radical scavenger N-2-mercaptopropionyl glycine (MPG 300 microM) was infused during the 10-min reperfusion and therefore was present in the myocardium in the distribution of the snared coronary artery during the entire reperfusion phase and also during the subsequent 30-min ischemia. In another preconditioned group MPG was added to the perfusate before the preconditioning ischemia and therefore was present in the tissue only during the preconditioning ischemia and then was washed out during reperfusion. In the fifth group MPG was added to the perfusate for only the last 5 min of the preconditioning reperfusion and therefore was present in the tissue during the last minutes of the reperfusion phase and the 30 min of ischemia. In an additional group of IPC hearts MPG was infused for only the initial 5 min of the preconditioning reperfusion and then allowed to wash out so that the scavenger was present for only the first half of the reperfusion phase. Infarct and risk zone sizes were measured by triphenyltetrazolium staining and fluorescent microspheres, resp. IPC reduced infarct size from 31.3 +/- 2.7% of the ischemic zone in control hearts to only 8.4 +/- 1.9%. MPG completely blocked IPC's protection in the third (39.4 +/- 2.8%) and sixth (36.1 +/- 7.7%) groups but did not affect its protection in groups 4 (8.1 +/- 1.5%) or 5 (7.8 +/- 1.1%). When deoxygenated buffer was used during IPC's reperfusion phase in the seventh group of hearts, protection was lost and infarct size was increased over that seen in control hearts (74.5 +/- 9.0%). Hence redox signaling occurs during the reperfusion phase of IPC, and the critical component in that reperfusion phase appears to be molecular oxygen.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Infarct protocols. Abbreviations: MPG= N-2-mercaptopropionyl glycine,
Fig. 2
Fig. 2
Infarct size as a percentage of risk zone for individual hearts and group means with SEM. The protective effect of ischemic preconditioning (IPC) was blocked in group 3 (2-N-mercaptopropionyl glycine infused for 15 min during IPC ischemia and reperfusion). *p<0.001 vs. Control, †p<0.001 vs. group 3

Similar articles

Cited by

References

    1. Baines CP, Goto M, Downey JM. Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol. 1997;29:207–216. - PubMed
    1. Becker LB. New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res. 2004;61:461–470. - PubMed
    1. Becker LB, Vanden Hoek TL, Shao Z-H, Li C-Q, Schumacker PT. Generation of superoxide in cardiomyocytes during ischemia before reperfusion. Am J Physiol. 1999;277:H2240–H2246. - PubMed
    1. Bolli R, Jeroudi MO, Patel BS, Aruoma OI, Halliwell B, Lai EK, McCay PB. Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion: evidence that myocardial "stunning" is a manifestation of reperfusion injury. Circ Res. 1989;65:607–622. - PubMed
    1. Costa ADT, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV, Critz SD. Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ Res. 2005;97:329–336. - PubMed

Publication types

MeSH terms