Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Jul;231(1):52-5.
doi: 10.1152/ajplegacy.1976.231.1.52.

Hyperpolarization of thyroid cells in vitro by thyrotropin and cyclic AMP

Hyperpolarization of thyroid cells in vitro by thyrotropin and cyclic AMP

R Batt et al. Am J Physiol. 1976 Jul.

Abstract

With the use of microelectrodes, membrane potential (MP) was measured in mouse thyroid glands in vitro. A basal resting MP of about -39 mV was confirmed. The initial effect of feeding a low-iodine diet (6-12 days) was hyperpolarization, up to -47 m V; chronic low-iodine diet led to depolarization. Low concentrations of thyrotropin (less than 3 mU/ml superfusate) caused hyperpolarization and high ones (greater than 10 mU/ml) led to depolarization. Cyclic AMP (10(-3) M), dibutyryl cyclic AMP (1.2 X 10(-4) M or 1.2 X 10(-3) M) and theophylline (10(-2) or 10(-3) M) caused similar hyperpolarization: D- and DL-propranolol (5 X 10(-5) -5 X 10(-4) M) produced depolarization and inhibited hyperpolarization by thyrotropin. Conclusions are that hyperpolarization is a consequence of short-term increased secretion of thyrotropin in vivo or of low (near physiological) concentrations in vitro; these effects are probably mediated by cyclic AMP. The relationship to and mechanism of depolarization resulting from chronic enhanced endogenous secretion or high in vitro concentrations of thyrotropin are unknown.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources